mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
83 lines
1.8 KiB
Python
83 lines
1.8 KiB
Python
import torch
|
|
from transformers import pipeline, AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
|
import time
|
|
|
|
test_sentence = 'Do you [MASK] the muffin man?'
|
|
|
|
# for comparison
|
|
bert = pipeline('fill-mask', model = 'bert-base-uncased')
|
|
print('\n'.join([d['sequence'] for d in bert(test_sentence)]))
|
|
|
|
|
|
deberta = pipeline('fill-mask', model = 'microsoft/deberta-v3-base', model_kwargs={"legacy": False})
|
|
print('\n'.join([d['sequence'] for d in deberta(test_sentence)]))
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
|
|
|
tokenized_dict = tokenizer(
|
|
["Is this working",], ["Not yet",],
|
|
return_tensors="pt"
|
|
)
|
|
|
|
deberta.model.forward = torch.compile(deberta.model.forward)
|
|
start=time.time()
|
|
deberta.model(**tokenized_dict)
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
deberta.model(**tokenized_dict)
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
deberta.model(**tokenized_dict)
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
model = AutoModel.from_pretrained('microsoft/deberta-base')
|
|
model.config.return_dict = False
|
|
model.config.output_hidden_states=False
|
|
input_tuple = (tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
|
|
|
|
|
start=time.time()
|
|
traced_model = torch.jit.trace(model, input_tuple)
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
start=time.time()
|
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
|
end=time.time()
|
|
print(end-start)
|
|
|
|
|
|
torch.jit.save(traced_model, "compiled_deberta.pt")
|
|
|
|
|
|
|
|
# my_script_module = torch.jit.script(model)
|