mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 06:40:04 +06:00

* initial commit * gloups * updates * work * weights match * nits * nits * updates to support the tokenizer :) * updates * Pixtral processor (#33454) * rough outline * Add in image break and end tokens * Fix * Udo some formatting changes * Set patch_size default * Fix * Fix token expansion * nit in conversion script * Fix image token list creation * done * add expected results * Process list of list of images (#33465) * updates * working image and processor * this is the expected format * some fixes * push current updated * working mult images! * add a small integration test * Uodate configuration docstring * Formatting * Config docstring fix * simplify model test * fixup modeling and etests * Return BatchMixFeature in image processor * fix some copies * update * nits * Update model docstring * Apply suggestions from code review * Fix up * updates * revert modeling changes * update * update * fix load safe * addd liscence * update * use pixel_values as required by the model * skip some tests and refactor * Add pixtral image processing tests (#33476) * Image processing tests * Add processing tests * woops * defaults reflect pixtral image processor * fixup post merge * images -> pixel values * oups sorry Mr docbuilder * isort * fix * fix processor tests * small fixes * nit * update * last nits * oups this was really breaking! * nits * is composition needs to be true --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
234 lines
11 KiB
Python
234 lines
11 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import requests
|
|
import torch
|
|
|
|
from transformers.testing_utils import require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoTokenizer, PixtralImageProcessor, PixtralProcessor
|
|
|
|
|
|
@require_vision
|
|
class PixtralProcessorTest(unittest.TestCase):
|
|
processor_class = PixtralProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.url_0 = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
cls.image_0 = Image.open(requests.get(cls.url_0, stream=True).raw)
|
|
cls.url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
cls.image_1 = Image.open(requests.get(cls.url_1, stream=True).raw)
|
|
cls.url_2 = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
|
cls.image_2 = Image.open(requests.get(cls.url_2, stream=True).raw)
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# FIXME - just load the processor directly from the checkpoint
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/pixtral-12b")
|
|
image_processor = PixtralImageProcessor()
|
|
self.processor = PixtralProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
@unittest.skip("No chat template was set for this model (yet)")
|
|
def test_chat_template(self):
|
|
expected_prompt = "USER: [IMG]\nWhat is shown in this image? ASSISTANT:"
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image"},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
],
|
|
},
|
|
]
|
|
formatted_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
self.assertEqual(expected_prompt, formatted_prompt)
|
|
|
|
@unittest.skip("No chat template was set for this model (yet)")
|
|
def test_image_token_filling(self):
|
|
# Important to check with non square image
|
|
image = torch.randint(0, 2, (3, 500, 316))
|
|
expected_image_tokens = 1526
|
|
image_token_index = 32000
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image"},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
],
|
|
},
|
|
]
|
|
inputs = self.processor(
|
|
text=[self.processor.apply_chat_template(messages)],
|
|
images=[image],
|
|
return_tensors="pt",
|
|
)
|
|
image_tokens = (inputs["input_ids"] == image_token_index).sum().item()
|
|
self.assertEqual(expected_image_tokens, image_tokens)
|
|
|
|
def test_processor_with_single_image(self):
|
|
prompt_string = "USER: [IMG]\nWhat's the content of the image? ASSISTANT:"
|
|
|
|
# Make small for checking image token expansion
|
|
self.processor.image_processor.size = {"longest_edge": 30}
|
|
self.processor.image_processor.patch_size = {"height": 2, "width": 2}
|
|
|
|
# Test passing in an image
|
|
inputs_image = self.processor(text=prompt_string, images=self.image_0, return_tensors="pt")
|
|
self.assertIn("input_ids", inputs_image)
|
|
self.assertTrue(len(inputs_image["input_ids"]) == 1)
|
|
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_image["pixel_values"], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"]) == 1)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"][0]) == 1)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
|
|
|
|
# fmt: off
|
|
input_ids = inputs_image["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|
|
|
|
# Test passing in a url
|
|
inputs_url = self.processor(text=prompt_string, images=self.url_0, return_tensors="pt")
|
|
self.assertIn("input_ids", inputs_url)
|
|
self.assertTrue(len(inputs_url["input_ids"]) == 1)
|
|
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_url["pixel_values"], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"]) == 1)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"][0]) == 1)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
|
|
|
|
# fmt: off
|
|
input_ids = inputs_url["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_processor_with_multiple_images_single_list(self):
|
|
prompt_string = "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:"
|
|
|
|
# Make small for checking image token expansion
|
|
self.processor.image_processor.size = {"longest_edge": 30}
|
|
self.processor.image_processor.patch_size = {"height": 2, "width": 2}
|
|
|
|
# Test passing in an image
|
|
inputs_image = self.processor(text=prompt_string, images=[self.image_0, self.image_1], return_tensors="pt")
|
|
self.assertIn("input_ids", inputs_image)
|
|
self.assertTrue(len(inputs_image["input_ids"]) == 1)
|
|
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_image["pixel_values"], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"]) == 1)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"][0]) == 2)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
|
|
|
|
# fmt: off
|
|
input_ids = inputs_image["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|
|
|
|
# Test passing in a url
|
|
inputs_url = self.processor(text=prompt_string, images=[self.url_0, self.url_1], return_tensors="pt")
|
|
self.assertIn("input_ids", inputs_url)
|
|
self.assertTrue(len(inputs_url["input_ids"]) == 1)
|
|
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_url["pixel_values"], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"]) == 1)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"][0]) == 2)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
|
|
# fmt: off
|
|
input_ids = inputs_url["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_processor_with_multiple_images_multiple_lists(self):
|
|
prompt_string = [
|
|
"USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:",
|
|
"USER: [IMG]\nWhat's the content of the image? ASSISTANT:",
|
|
]
|
|
self.processor.tokenizer.pad_token = "</s>"
|
|
image_inputs = [[self.image_0, self.image_1], [self.image_2]]
|
|
|
|
# Make small for checking image token expansion
|
|
self.processor.image_processor.size = {"longest_edge": 30}
|
|
self.processor.image_processor.patch_size = {"height": 2, "width": 2}
|
|
|
|
# Test passing in an image
|
|
inputs_image = self.processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
|
|
self.assertIn("input_ids", inputs_image)
|
|
self.assertTrue(len(inputs_image["input_ids"]) == 2)
|
|
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_image["pixel_values"], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"]) == 2)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_image["pixel_values"][0]) == 2)
|
|
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
|
|
|
|
# fmt: off
|
|
input_ids = inputs_image["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|
|
|
|
# Test passing in a url
|
|
inputs_url = self.processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
|
|
self.assertIn("input_ids", inputs_url)
|
|
self.assertTrue(len(inputs_url["input_ids"]) == 2)
|
|
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
|
|
self.assertIsInstance(inputs_url["pixel_values"], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"]) == 2)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0], list)
|
|
self.assertTrue(len(inputs_url["pixel_values"][0]) == 2)
|
|
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
|
|
|
|
# fmt: off
|
|
input_ids = inputs_url["input_ids"]
|
|
self.assertEqual(
|
|
input_ids[0].tolist(),
|
|
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
|
|
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
|
|
)
|
|
# fmt: on
|