mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Add MLCD model * Update codes for auto-mapping * Add test scripts for MLCD * Update doc for MLCD model * Fix import error * Fix import error * Fix CI error for attention_outputs * Fix code style for CI * Fix code style for CI * Fix code style for CI * Fix code style for CI * Fix code style for CI * Fix CI error for initialization * Fix code style for CI * Fix code style for CI * Reformat codes and docs for CI test * Reformat codes and docs for CI test * Remove unused attributes for CI test * Fix style for CI test * List MLCD in flash_attn doc * Fix: typos, modulars, refactors from suggestions * Refactoring convert_mlcd_weights_to_hf.py from suggestions * Fix: docs conflicts * Fix error for CI test * Fix style for CI test * Add integration test for MLCD * Refactoring by class inheritance * Fix: refactor attention interface, adjust codes * Fix: merging conflicts * Fix: merging conflicts * Fix: style for CI test * Fix: style for CI test * Fix: set test_resize_embeddings to be False * Fix: initializer for CI test * Fix: conflicts, CI test, warning and refactoring * Fix: merging conflicts * Refactor * Update docs * Fix mistakes * Remove unused args and fix multi-gpu error * Revert position_embeddings * Solve conflicts * Solve conflicts * Remove dummy * Update _init_weights * Update _init_weights * Update _init_weights for CI test
222 lines
8.0 KiB
Python
222 lines
8.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch MLCD model."""
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
from PIL import Image
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
MLCDVisionConfig,
|
|
MLCDVisionModel,
|
|
is_torch_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class MLCDVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in MLCD, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return MLCDVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = MLCDVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class MLCDVisionModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `MLCDVisionModel`.
|
|
"""
|
|
|
|
all_model_classes = (MLCDVisionModel,) if is_torch_available() else ()
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
test_resize_embeddings = False
|
|
test_torch_exportable = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = MLCDVisionModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=MLCDVisionConfig, has_text_modality=False)
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, torch.nn.Linear))
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad and "class_pos_emb" not in name:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class MLCDVisionModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference(self):
|
|
model_name = "DeepGlint-AI/mlcd-vit-bigG-patch14-448"
|
|
model = MLCDVisionModel.from_pretrained(model_name).to(torch_device)
|
|
processor = AutoProcessor.from_pretrained(model_name)
|
|
|
|
# process single image
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
# move inputs to the same device as the model
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, output_attentions=True)
|
|
|
|
last_hidden_state = outputs.last_hidden_state
|
|
last_attention = outputs.attentions[-1]
|
|
|
|
# verify the shapes of last_hidden_state and last_attention
|
|
self.assertEqual(
|
|
last_hidden_state.shape,
|
|
torch.Size([1, 1025, 1664]),
|
|
)
|
|
self.assertEqual(
|
|
last_attention.shape,
|
|
torch.Size([1, 16, 1025, 1025]),
|
|
)
|
|
|
|
# verify the values of last_hidden_state and last_attention
|
|
# fmt: off
|
|
expected_partial_5x5_last_hidden_state = torch.tensor(
|
|
[
|
|
[-0.8978, -0.1181, 0.4769, 0.4761, -0.5779],
|
|
[ 0.2640, -2.6150, 0.4853, 0.5743, -1.1003],
|
|
[ 0.3314, -0.3328, -0.4305, -0.1874, -0.7701],
|
|
[-1.5174, -1.0238, -1.1854, 0.1749, -0.8786],
|
|
[ 0.2323, -0.8346, -0.9680, -0.2951, 0.0867],
|
|
]
|
|
).to(torch_device)
|
|
|
|
expected_partial_5x5_last_attention = torch.tensor(
|
|
[
|
|
[2.0930e-01, 6.3073e-05, 1.4717e-03, 2.6881e-05, 3.0513e-03],
|
|
[1.5828e-04, 2.1056e-03, 4.6784e-04, 1.8276e-03, 5.3233e-04],
|
|
[5.7824e-04, 1.1446e-03, 1.3854e-03, 1.1775e-03, 1.2750e-03],
|
|
[9.6343e-05, 1.6365e-03, 2.9066e-04, 3.1089e-03, 2.0607e-04],
|
|
[6.2688e-04, 1.1656e-03, 1.5030e-03, 8.2819e-04, 2.6992e-03],
|
|
]
|
|
).to(torch_device)
|
|
# fmt: on
|
|
|
|
torch.testing.assert_close(
|
|
last_hidden_state[0, :5, :5], expected_partial_5x5_last_hidden_state, rtol=1e-3, atol=1e-3
|
|
)
|
|
torch.testing.assert_close(
|
|
last_attention[0, 0, :5, :5], expected_partial_5x5_last_attention, rtol=1e-4, atol=1e-4
|
|
)
|