![]() * No more Tuple, List, Dict * make fixup * More style fixes * Docstring fixes with regex replacement * Trigger tests * Redo fixes after rebase * Fix copies * [test all] * update * [test all] * update * [test all] * make style after rebase * Patch the hf_argparser test * Patch the hf_argparser test * style fixes * style fixes * style fixes * Fix docstrings in Cohere test * [test all] --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> |
||
---|---|---|
.. | ||
configuration_dummy.py | ||
configuration_my_new_model.py | ||
configuration_my_new_model2.py | ||
configuration_new_model.py | ||
configuration_super.py | ||
convert_examples.sh | ||
image_processing_new_imgproc_model.py | ||
modeling_add_function.py | ||
modeling_dummy_bert.py | ||
modeling_dummy.py | ||
modeling_from_uppercase_model.py | ||
modeling_multimodal1.py | ||
modeling_multimodal2.py | ||
modeling_my_new_model2.py | ||
modeling_new_task_model.py | ||
modeling_roberta.py | ||
modeling_super.py | ||
modeling_switch_function.py | ||
modeling_test_detr.py | ||
modular_add_function.py | ||
modular_dummy_bert.py | ||
modular_dummy.py | ||
modular_from_uppercase_model.py | ||
modular_multimodal1.py | ||
modular_multimodal2.py | ||
modular_my_new_model.py | ||
modular_my_new_model2.py | ||
modular_new_imgproc_model.py | ||
modular_new_model.py | ||
modular_new_task_model.py | ||
modular_roberta.py | ||
modular_super.py | ||
modular_switch_function.py | ||
modular_test_detr.py | ||
README.md |
Using the modular_converter
linter
pip install libcst
is a must!
sh examples/modular-transformers/convert_examples.sh
to get the converted outputs
The modular converter is a new linter
specific to transformers
. It allows us to unpack inheritance in python to convert a modular file like modular_gemma.py
into a single model single file
.
Examples of possible usage are available in the examples/modular-transformers
, or modular_gemma
for a full model usage.
python utils/modular_model_converter.py --files_to_parse "/Users/arthurzucker/Work/transformers/examples/modular-transformers/modular_my_new_model2.py"
How it works
We use the libcst
parser to produce an AST representation of the modular_xxx.py
file. For any imports that are made from transformers.models.modeling_xxxx
we parse the source code of that module, and build a class dependency mapping, which allows us to unpack the modularerence dependencies.
The code from the modular
file and the class dependency mapping are "merged" to produce the single model single file.
We use ruff to automatically remove the potential duplicate imports.
Why we use libcst instead of the native AST?
AST is super powerful, but it does not keep the docstring
, comment
or code formatting. Thus we decided to go with libcst