mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 11:08:23 +06:00

* Make kwargs uniform for TrOCR * Add tests * Put back current_processor * Remove args * Add todo comment * Code review - breaking change
130 lines
5.4 KiB
Python
130 lines
5.4 KiB
Python
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers.models.xlm_roberta.tokenization_xlm_roberta import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import (
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import TrOCRProcessor, ViTImageProcessor, XLMRobertaTokenizerFast
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
@require_vision
|
|
class TrOCRProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
text_input_name = "labels"
|
|
processor_class = TrOCRProcessor
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
|
|
|
image_processor = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
|
|
tokenizer = XLMRobertaTokenizerFast.from_pretrained("FacebookAI/xlm-roberta-base")
|
|
processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return XLMRobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = TrOCRProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast)
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.image_processor, ViTImageProcessor)
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string())
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = TrOCRProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = TrOCRProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast)
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, ViTImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor_text(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["pixel_values", "labels"])
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|