mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
355 lines
18 KiB
Python
355 lines
18 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2018 CMU and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Bertology: this script shows how you can explore the internals of the models in the library to:
|
|
- compute the entropy of the head attentions
|
|
- compute the importance of each head
|
|
- prune (remove) the low importance head.
|
|
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
|
|
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
|
|
"""
|
|
import os
|
|
import argparse
|
|
import logging
|
|
from datetime import timedelta, datetime
|
|
from tqdm import tqdm
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from transformers import (WEIGHTS_NAME,
|
|
BertConfig, BertForSequenceClassification, BertTokenizer,
|
|
XLMConfig, XLMForSequenceClassification, XLMTokenizer,
|
|
XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer)
|
|
|
|
from run_glue import set_seed, load_and_cache_examples, ALL_MODELS, MODEL_CLASSES
|
|
|
|
from utils_glue import (compute_metrics, convert_examples_to_features,
|
|
output_modes, processors)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def entropy(p):
|
|
""" Compute the entropy of a probability distribution """
|
|
plogp = p * torch.log(p)
|
|
plogp[p == 0] = 0
|
|
return -plogp.sum(dim=-1)
|
|
|
|
|
|
def print_2d_tensor(tensor):
|
|
""" Print a 2D tensor """
|
|
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
|
|
for row in range(len(tensor)):
|
|
if tensor.dtype != torch.long:
|
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
|
|
else:
|
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
|
|
|
|
|
|
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None):
|
|
""" This method shows how to compute:
|
|
- head attention entropy
|
|
- head importance scores according to http://arxiv.org/abs/1905.10650
|
|
"""
|
|
# Prepare our tensors
|
|
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
|
|
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
|
|
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
|
|
|
|
if head_mask is None:
|
|
head_mask = torch.ones(n_layers, n_heads).to(args.device)
|
|
head_mask.requires_grad_(requires_grad=True)
|
|
preds = None
|
|
labels = None
|
|
tot_tokens = 0.0
|
|
|
|
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
|
batch = tuple(t.to(args.device) for t in batch)
|
|
input_ids, input_mask, segment_ids, label_ids = batch
|
|
|
|
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
|
|
outputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask)
|
|
loss, logits, all_attentions = outputs[0], outputs[1], outputs[-1] # Loss and logits are the first, attention the last
|
|
loss.backward() # Backpropagate to populate the gradients in the head mask
|
|
|
|
if compute_entropy:
|
|
for layer, attn in enumerate(all_attentions):
|
|
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
|
|
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
|
|
|
|
if compute_importance:
|
|
head_importance += head_mask.grad.abs().detach()
|
|
|
|
# Also store our logits/labels if we want to compute metrics afterwards
|
|
if preds is None:
|
|
preds = logits.detach().cpu().numpy()
|
|
labels = label_ids.detach().cpu().numpy()
|
|
else:
|
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
|
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
|
|
|
|
tot_tokens += input_mask.float().detach().sum().data
|
|
|
|
# Normalize
|
|
attn_entropy /= tot_tokens
|
|
head_importance /= tot_tokens
|
|
# Layerwise importance normalization
|
|
if not args.dont_normalize_importance_by_layer:
|
|
exponent = 2
|
|
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1/exponent)
|
|
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
|
|
|
|
if not args.dont_normalize_global_importance:
|
|
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
|
|
|
|
# Print/save matrices
|
|
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
|
|
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
|
|
|
|
logger.info("Attention entropies")
|
|
print_2d_tensor(attn_entropy)
|
|
logger.info("Head importance scores")
|
|
print_2d_tensor(head_importance)
|
|
logger.info("Head ranked by importance scores")
|
|
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
|
|
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
|
|
head_ranks = head_ranks.view_as(head_importance)
|
|
print_2d_tensor(head_ranks)
|
|
|
|
return attn_entropy, head_importance, preds, labels
|
|
|
|
|
|
def mask_heads(args, model, eval_dataloader):
|
|
""" This method shows how to mask head (set some heads to zero), to test the effect on the network,
|
|
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
|
|
"""
|
|
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
|
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
|
|
original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
|
|
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
|
|
|
|
new_head_mask = torch.ones_like(head_importance)
|
|
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
|
|
|
|
current_score = original_score
|
|
while current_score >= original_score * args.masking_threshold:
|
|
head_mask = new_head_mask.clone() # save current head mask
|
|
# heads from least important to most - keep only not-masked heads
|
|
head_importance[head_mask == 0.0] = float('Inf')
|
|
current_heads_to_mask = head_importance.view(-1).sort()[1]
|
|
|
|
if len(current_heads_to_mask) <= num_to_mask:
|
|
break
|
|
|
|
# mask heads
|
|
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
|
|
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
|
|
new_head_mask = new_head_mask.view(-1)
|
|
new_head_mask[current_heads_to_mask] = 0.0
|
|
new_head_mask = new_head_mask.view_as(head_mask)
|
|
print_2d_tensor(new_head_mask)
|
|
|
|
# Compute metric and head importance again
|
|
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
|
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
|
|
current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
|
|
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
|
|
|
|
logger.info("Final head mask")
|
|
print_2d_tensor(head_mask)
|
|
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
|
|
|
|
return head_mask
|
|
|
|
|
|
def prune_heads(args, model, eval_dataloader, head_mask):
|
|
""" This method shows how to prune head (remove heads weights) based on
|
|
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
|
|
"""
|
|
# Try pruning and test time speedup
|
|
# Pruning is like masking but we actually remove the masked weights
|
|
before_time = datetime.now()
|
|
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
|
|
compute_entropy=False, compute_importance=False, head_mask=head_mask)
|
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
|
|
score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
|
|
original_time = datetime.now() - before_time
|
|
|
|
original_num_params = sum(p.numel() for p in model.parameters())
|
|
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
|
|
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
|
|
model.prune_heads(heads_to_prune)
|
|
pruned_num_params = sum(p.numel() for p in model.parameters())
|
|
|
|
before_time = datetime.now()
|
|
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
|
|
compute_entropy=False, compute_importance=False, head_mask=None)
|
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
|
|
score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
|
|
new_time = datetime.now() - before_time
|
|
|
|
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
|
|
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
|
|
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
## Required parameters
|
|
parser.add_argument("--data_dir", default=None, type=str, required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
|
|
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
|
|
ALL_MODELS))
|
|
parser.add_argument("--task_name", default=None, type=str, required=True,
|
|
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
|
|
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
|
help="The output directory where the model predictions and checkpoints will be written.")
|
|
|
|
## Other parameters
|
|
parser.add_argument("--config_name", default="", type=str,
|
|
help="Pretrained config name or path if not the same as model_name_or_path")
|
|
parser.add_argument("--tokenizer_name", default="", type=str,
|
|
help="Pretrained tokenizer name or path if not the same as model_name_or_path")
|
|
parser.add_argument("--cache_dir", default="", type=str,
|
|
help="Where do you want to store the pre-trained models downloaded from s3")
|
|
parser.add_argument("--data_subset", type=int, default=-1,
|
|
help="If > 0: limit the data to a subset of data_subset instances.")
|
|
parser.add_argument("--overwrite_output_dir", action='store_true',
|
|
help="Whether to overwrite data in output directory")
|
|
|
|
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true',
|
|
help="Don't normalize importance score by layers")
|
|
parser.add_argument("--dont_normalize_global_importance", action='store_true',
|
|
help="Don't normalize all importance scores between 0 and 1")
|
|
|
|
parser.add_argument("--try_masking", action='store_true',
|
|
help="Whether to try to mask head until a threshold of accuracy.")
|
|
parser.add_argument("--masking_threshold", default=0.9, type=float,
|
|
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).")
|
|
parser.add_argument("--masking_amount", default=0.1, type=float,
|
|
help="Amount to heads to masking at each masking step.")
|
|
parser.add_argument("--metric_name", default="acc", type=str,
|
|
help="Metric to use for head masking.")
|
|
|
|
parser.add_argument("--max_seq_length", default=128, type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, sequences shorter padded.")
|
|
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
|
|
|
|
parser.add_argument("--seed", type=int, default=42)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
|
|
parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available")
|
|
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
|
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
# Setup devices and distributed training
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
args.n_gpu = torch.cuda.device_count()
|
|
else:
|
|
torch.cuda.set_device(args.local_rank)
|
|
args.device = torch.device("cuda", args.local_rank)
|
|
args.n_gpu = 1
|
|
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
|
|
|
|
# Setup logging
|
|
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
|
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
|
|
|
|
# Set seeds
|
|
set_seed(args)
|
|
|
|
# Prepare GLUE task
|
|
args.task_name = args.task_name.lower()
|
|
if args.task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (args.task_name))
|
|
processor = processors[args.task_name]()
|
|
args.output_mode = output_modes[args.task_name]
|
|
label_list = processor.get_labels()
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
|
|
|
args.model_type = ""
|
|
for key in MODEL_CLASSES:
|
|
if key in args.model_name_or_path.lower():
|
|
args.model_type = key # take the first match in model types
|
|
break
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
finetuning_task=args.task_name,
|
|
output_attentions=True,
|
|
cache_dir=args.cache_dir if args.cache_dir else None)
|
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
|
cache_dir=args.cache_dir if args.cache_dir else None)
|
|
model = model_class.from_pretrained(args.model_name_or_path,
|
|
from_tf=bool('.ckpt' in args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=args.cache_dir if args.cache_dir else None)
|
|
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
|
|
|
# Distributed and parallel training
|
|
model.to(args.device)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
|
output_device=args.local_rank,
|
|
find_unused_parameters=True)
|
|
elif args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Print/save training arguments
|
|
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
|
|
logger.info("Training/evaluation parameters %s", args)
|
|
|
|
# Prepare dataset for the GLUE task
|
|
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
|
|
if args.data_subset > 0:
|
|
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
|
|
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
|
|
|
|
|
|
# Compute head entropy and importance score
|
|
compute_heads_importance(args, model, eval_dataloader)
|
|
|
|
|
|
# Try head masking (set heads to zero until the score goes under a threshole)
|
|
# and head pruning (remove masked heads and see the effect on the network)
|
|
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
|
|
head_mask = mask_heads(args, model, eval_dataloader)
|
|
prune_heads(args, model, eval_dataloader, head_mask)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|