transformers/tests/models/blip_2/test_modeling_blip_2.py
Yao Matrix 89542fb81c
enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00

1971 lines
81 KiB
Python

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BLIP-2 model."""
import inspect
import tempfile
import unittest
import numpy as np
import pytest
import requests
from parameterized import parameterized
from transformers import CONFIG_MAPPING, Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
from transformers.testing_utils import (
Expectations,
cleanup,
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_torch_multi_accelerator,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
Blip2ForConditionalGeneration,
Blip2ForImageTextRetrieval,
Blip2Model,
Blip2TextModelWithProjection,
Blip2VisionModel,
Blip2VisionModelWithProjection,
)
if is_vision_available():
from PIL import Image
from transformers import Blip2Processor
class Blip2VisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return Blip2VisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Blip2VisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as BLIP-2's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Blip2VisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Blip2VisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Blip2VisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BLIP-2's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2VisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Blip2QFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
use_qformer_text_input=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
self.use_qformer_text_input = use_qformer_text_input
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return Blip2QFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
use_qformer_text_input=self.use_qformer_text_input,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class Blip2TextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class Blip2ForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self,
parent,
vision_kwargs=None,
qformer_kwargs=None,
text_kwargs=None,
is_training=True,
num_query_tokens=10,
image_token_index=4,
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length + num_query_tokens # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
self.image_token_index = image_token_index
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_tokens = (
torch.ones((input_ids.shape[0], self.num_query_tokens), device=torch_device, dtype=input_ids.dtype)
* self.image_token_index
)
input_ids[input_ids == self.image_token_index] = self.text_model_tester.pad_token_id
input_ids = torch.cat([vision_tokens, input_ids], dim=-1)
vision_attention_mask = torch.ones_like(vision_tokens)
attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1)
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
image_token_index=self.image_token_index,
)
def create_and_check_for_conditional_generation(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration,) if is_torch_available() else ()
additional_model_inputs = ["input_ids"]
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
_is_composite = True
def setUp(self):
self.model_tester = Blip2ForConditionalGenerationDecoderOnlyModelTester(self)
common_properties = ["image_token_index", "num_query_tokens", "image_text_hidden_size"]
self.config_tester = ConfigTester(
self, config_class=Blip2Config, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == "sdpa")
self.assertTrue(model.vision_model.config._attn_implementation == "sdpa")
self.assertTrue(model.qformer.config._attn_implementation == "eager")
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == "sdpa"
):
raise ValueError("The eager model should not have SDPA attention layers")
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite because BLIP internally calls LM.generate() with embeds thus it cannot operate in no cache format
def _check_generate_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1):
use_cache = True # force this to be True in case False is passed
super()._check_generate_outputs(
output, config, use_cache=use_cache, num_return_sequences=num_return_sequences, num_beams=num_beams
)
# overwrite because BLIP2 cannot generate only from input ids, and requires pixel values in all cases to be present
@pytest.mark.generate
def test_left_padding_compatibility(self):
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding
# - The model must have generative capabilities
if len(self.all_generative_model_classes) == 0:
self.skipTest(reason="No generative architecture available for this model.")
# - The model must support padding
if not self.has_attentions:
self.skipTest(reason="This model doesn't support padding.")
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _ = self.prepare_config_and_inputs_for_generate()
if config.is_encoder_decoder:
continue
else:
decoder_only_classes.append(model_class)
if len(decoder_only_classes) == 0:
self.skipTest(reason="No decoder-only architecture available for this model.")
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
# added support for it yet. We skip these models for now.
has_encoder_attributes = any(
attr_name
for attr_name in config.to_dict().keys()
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
)
if has_encoder_attributes:
self.skipTest(
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
)
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict.get("attention_mask")
pixel_values = inputs_dict["pixel_values"]
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# They should result in very similar logits
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
@unittest.skip("BLIP2 cannot generate only from input ids, and requires pixel values in all cases to be present")
@parameterized.expand([("greedy", 1), ("beam search", 2)])
def test_generate_from_inputs_embeds(self, _, num_beams):
pass
@unittest.skip("BLIP2 cannot generate only from input ids, and requires pixel values in all cases to be present")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
# this class is based on `T5ModelTester` found in tests/models/t5/test_modeling_t5.py
class Blip2TextModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=12,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return CONFIG_MAPPING["t5"](
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
# this model tester uses an encoder-decoder language model (T5)
class Blip2ModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
(
_,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, lm_labels
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, labels
):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
self.parent.assertEqual(
result.logits.shape,
(
self.vision_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.vocab_size,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
pixel_values,
decoder_input_ids,
decoder_attention_mask,
labels,
) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return config, inputs_dict
@require_torch
class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration, Blip2Model) if is_torch_available() else ()
additional_model_inputs = ["input_ids", "decoder_input_ids"]
# Doesn't run generation tests. TODO: fix generation tests for Blip2ForConditionalGeneration
all_generative_model_classes = ()
pipeline_model_mapping = (
{
"feature-extraction": Blip2Model,
"image-to-text": Blip2ForConditionalGeneration,
"visual-question-answering": Blip2ForConditionalGeneration,
"image-text-to-text": Blip2ForConditionalGeneration,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
_is_composite = True
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "VisualQuestionAnsweringPipelineTests":
# Get `RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'`.
return True
return False
def setUp(self):
self.model_tester = Blip2ModelTester(self)
common_properties = ["image_token_index", "num_query_tokens", "image_text_hidden_size"]
self.config_tester = ConfigTester(
self, config_class=Blip2Config, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_cpu_offload(self):
pass
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == "eager")
self.assertTrue(model.vision_model.config._attn_implementation == "sdpa")
self.assertTrue(model.qformer.config._attn_implementation == "eager")
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == "sdpa"
):
raise ValueError("The eager model should not have SDPA attention layers")
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_get_text_features(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = {
"input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
"attention_mask": torch.LongTensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(torch_device),
"decoder_input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
}
model = Blip2Model(config).to(torch_device)
model.eval()
text_features = model.get_text_features(**inputs_dict)
self.assertEqual(text_features[0].shape, (1, 10, config.text_config.vocab_size))
def test_get_image_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
image_features = model.get_image_features(**inputs_dict)
self.assertEqual(
image_features[0].shape,
(
self.model_tester.vision_model_tester.batch_size,
self.model_tester.vision_model_tester.seq_length,
config.vision_config.hidden_size,
),
)
def test_get_qformer_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
qformer_features = model.get_qformer_features(**inputs_dict)
self.assertEqual(
qformer_features[0].shape,
(self.model_tester.vision_model_tester.batch_size, 10, config.vision_config.hidden_size),
)
# override from common to deal with nested configurations (`vision_config`, `text_config` and `qformer_config`)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for key in ["vision_config", "qformer_config", "text_config"]:
setattr(configs_no_init, key, _config_zero_init(getattr(configs_no_init, key)))
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
class Blip2TextModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_model(self, config, input_ids, attention_mask):
model = Blip2TextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=attention_mask, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.vision_model_tester.batch_size, input_ids.shape[1], self.qformer_model_tester.hidden_size),
)
self.parent.assertEqual(
result.text_embeds.shape,
(
self.vision_model_tester.batch_size,
input_ids.shape[1],
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
input_ids,
attention_mask=attention_mask,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.text_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2TextModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2TextModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_ids", "attention_mask", "position_ids"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_accelerator
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2TextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
_, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
self.assertEqual(
outputs.text_embeds.shape,
(
self.model_tester.qformer_model_tester.batch_size,
input_ids.shape[1],
model.config.image_text_hidden_size,
),
)
class Blip2VisionModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.num_attention_heads = self.vision_model_tester.num_attention_heads
self.seq_length = self.vision_model_tester.seq_length
self.hidden_size = self.vision_model_tester.hidden_size
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.vision_model_tester.batch_size,
self.vision_model_tester.seq_length,
self.qformer_model_tester.hidden_size,
),
)
self.parent.assertEqual(
result.image_embeds.shape,
(
self.vision_model_tester.batch_size,
config.vision_config.hidden_size,
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
pixel_values,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.image_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2VisionModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2VisionModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2VisionModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_accelerator
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2VisionModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "vision_projection"))
_, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
self.assertEqual(
outputs.image_embeds.shape,
(
self.model_tester.vision_model_tester.batch_size,
model.config.num_query_tokens,
model.config.image_text_hidden_size,
),
)
class Blip2TextRetrievalModelTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForImageTextRetrieval(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, use_image_text_matching_head=True)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, 2),
)
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, self.qformer_model_tester.batch_size),
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.qformer_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
@require_torch
class Blip2TextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForImageTextRetrieval,) if is_torch_available() else ()
additional_model_inputs = ["input_ids"]
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextRetrievalModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2ForImageTextRetrieval does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "input_ids", "attention_mask"]
expected_arg_names.extend(
["use_image_text_matching_head"] if "use_image_text_matching_head" in arg_names else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
@require_torch_accelerator
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2ForImageTextRetrieval.from_pretrained(model_name)
self.assertIsNotNone(model)
_, input_ids, attention_mask, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
use_image_text_matching_head=True,
)
self.assertEqual(outputs.logits_per_image.shape, (self.model_tester.qformer_model_tester.batch_size, 2))
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
)
self.assertEqual(
outputs.logits_per_image.shape,
(self.model_tester.vision_model_tester.batch_size, self.model_tester.qformer_model_tester.batch_size),
)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initialized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif name == "temp":
self.assertAlmostEqual(
param.data.item(),
0.07,
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class Blip2ModelIntegrationTest(unittest.TestCase):
def setUp(self):
cleanup(torch_device, gc_collect=True)
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_inference_opt(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
# max_length for BLIP includes prompt length from now on, use max_new_tokens
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 45641, 35, 61, 343, 16, 42, 116, 31652, 35, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(generated_text, "Question: which city is this? Answer: it's not a city, it's a beach")
def test_inference_interpolate_pos_encoding(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 8, 2335, 15, 5, 4105, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(generated_text, "a woman and dog on the beach")
def test_inference_opt_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
# Test output (in this case, slightly different from greedy search)
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(predictions[1].tolist(), expected_ids)
def test_inference_t5(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expectations = Expectations(
{
("xpu", 3): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
"a woman is playing with her dog on the beach",
],
("cuda", 7): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
"a woman is playing with her dog on the beach",
],
}
)
expected_outputs = expectations.get_expectation()
# Test output
self.assertEqual(predictions[0].tolist(), expected_outputs[0])
self.assertEqual(expected_outputs[1], generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expectations = Expectations(
{
("xpu", 3): [
[0, 3, 7, 152, 2515, 11389, 3523, 1],
"san francisco",
],
("cuda", 7): [
[0, 3, 7, 152, 2515, 11389, 3523, 1],
"san francisco",
],
}
)
expected_outputs = expectations.get_expectation()
# Test output
self.assertEqual(predictions[0].tolist(), expected_outputs[0])
self.assertEqual(generated_text, expected_outputs[1])
def test_inference_t5_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
expectations = Expectations(
{
("xpu", 3): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
],
("cuda", 7): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
],
}
)
expected_predictions = expectations.get_expectation()
# Test output (in this case, slightly different from greedy search)
self.assertEqual(predictions[0].tolist(), expected_predictions[0])
self.assertEqual(predictions[1].tolist(), expected_predictions[1])
@require_torch_multi_accelerator
def test_inference_opt_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="balanced"
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118])
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[2, 45641, 35, 61, 343, 16, 42, 116, 31652, 35, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118],
)
self.assertEqual(generated_text, "Question: which city is this? Answer: it's not a city, it's a beach")
@require_torch_multi_accelerator
def test_inference_t5_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
device_map = device_map = {
"query_tokens": 0,
"vision_model": 0,
"language_model": 1,
"language_projection": 0,
"qformer": 0,
}
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map=device_map
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[0, 3, 7, 152, 67, 839, 1],
)
self.assertEqual(generated_text, "san diego")
def test_expansion_in_processing(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
image = prepare_img()
prompt = "Question: which city is this? Answer:"
# Make sure we will go the legacy path by setting these args to None
processor.num_query_tokens = None
model.config.image_token_index = None
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Add args to the config to trigger new logic when inputs are expanded in processing file
processor.num_query_tokens = model.config.num_query_tokens
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
model.config.image_token_index = len(processor.tokenizer) - 1
model.resize_token_embeddings(processor.tokenizer.vocab_size, pad_to_multiple_of=64)
# Generate again with new inputs
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
self.assertTrue(generated_text_expanded == generated_text)
@require_torch_accelerator
def test_inference_itm(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0238, 0.9762]])
torch.testing.assert_close(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(out[0].cpu(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3)
@require_torch_accelerator
@require_torch_fp16
def test_inference_itm_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0239, 0.9761]])
torch.testing.assert_close(torch.nn.Softmax()(out_itm[0].cpu().float()), expected_scores, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(out[0].cpu().float(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3)
@require_torch_accelerator
@require_torch_fp16
def test_inference_vision_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2VisionModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out = model(**inputs)
# verify
expected_image_embeds = [
-0.093994140625,
-0.075927734375,
0.031890869140625,
0.053009033203125,
0.0352783203125,
-0.01190185546875,
]
self.assertTrue(np.allclose(out.image_embeds[0][0][:6].tolist(), expected_image_embeds, atol=1e-3))
@require_torch_accelerator
@require_torch_fp16
def test_inference_text_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2TextModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
inputs = processor(text="a woman sitting on the beach with a dog", padding=True, return_tensors="pt").to(
torch_device
)
# forward pass
out = model(**inputs)
# verify
expected_text_embeds = [
-0.1082763671875,
0.053192138671875,
-0.02825927734375,
0.0169830322265625,
0.08648681640625,
-0.04656982421875,
]
self.assertTrue(np.allclose(out.text_embeds[0][0][:6].tolist(), expected_text_embeds, atol=1e-3))