mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* add encode labels function to tokenizer * start adding finetuning * init dropout * upload * correct convert script * apply changes * fix second typo * make first dummy training run * adapt convert script * push confg for comparison * remove conf * finish training * adapt data collator * add research folder * update according to fairseq feedback * some minor corrections * refactor masking indices a bit * some minor changes * clean tokenizer * finish clean-up * remove previous logic * update run script * correct training * finish changes * finish model * correct bug * fix training a bit more * add some tests * finish gradient checkpointing * finish example * correct gradient checkpointing * improve tokenization method * revert changes in tokenizer * revert general change * adapt fine-tuning * update * save intermediate test * Update README.md * finish finetuning * delete conversion script * Update src/transformers/models/wav2vec2/configuration_wav2vec2.py * Update src/transformers/models/wav2vec2/processing_wav2vec2.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * finish wav2vec2 script * finish wav2vec2 fine-tuning * finalize test * correct test * adapt tests * finish * remove test file Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
80 lines
3.6 KiB
ReStructuredText
80 lines
3.6 KiB
ReStructuredText
..
|
|
Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
Wav2Vec2
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The Wav2Vec2 model was proposed in `wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
|
|
<https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on
|
|
transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks
|
|
the speech input in the latent space and solves a contrastive task defined over a quantization of the latent
|
|
representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the
|
|
clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state
|
|
of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and
|
|
pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech
|
|
recognition with limited amounts of labeled data.*
|
|
|
|
Tips:
|
|
|
|
- Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
|
|
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
|
|
using :class:`~transformers.Wav2Vec2CTCTokenizer`.
|
|
|
|
|
|
Wav2Vec2Config
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2Config
|
|
:members:
|
|
|
|
|
|
Wav2Vec2CTCTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2CTCTokenizer
|
|
:members: __call__, save_vocabulary
|
|
|
|
|
|
Wav2Vec2FeatureExtractor
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2FeatureExtractor
|
|
:members: __call__
|
|
|
|
|
|
Wav2Vec2Processor
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2Processor
|
|
:members: __call__, pad, from_pretrained, save_pretrained, batch_decode, decode, as_target_processor
|
|
|
|
|
|
Wav2Vec2Model
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2Model
|
|
:members: forward
|
|
|
|
|
|
Wav2Vec2ForCTC
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.Wav2Vec2ForCTC
|
|
:members: forward
|