mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* Create modeling_tf_dpr.py * Add TFDPR * Add back TFPegasus, TFMarian, TFMBart, TFBlenderBot last commit accidentally deleted these 4 lines, so I recover them back * Add TFDPR * Add TFDPR * clean up some comments, add TF input-style doc string * Add TFDPR * Make return_dict=False as default * Fix return_dict bug (in .from_pretrained) * Add get_input_embeddings() * Create test_modeling_tf_dpr.py The current version is already passed all 27 tests! Please see the test run at : https://colab.research.google.com/drive/1czS_m9zy5k-iSJbzA_DP1k1xAAC_sdkf?usp=sharing * fix quality * delete init weights * run fix copies * fix repo consis * del config_class, load_tf_weights They shoud be 'pytorch only' * add config_class back after removing it, test failed ... so totally only removing "use_tf_weights = None" on Lysandre suggestion * newline after .. note:: * import tf, np (Necessary for ModelIntegrationTest) * slow_test from_pretrained with from_pt=True At the moment we don't have TF weights (since we don't have official official TF model) Previously, I did not run slow test, so I missed this bug * Add simple TFDPRModelIntegrationTest Note that this is just a test that TF and Pytorch gives approx. the same output. However, I could not test with the official DPR repo's output yet * upload correct tf model * remove position_ids as missing keys * create modeling_tf_rag * add tests for tf * add tf tests * revert wrong pt commit * further refactor * further refactor * refactor * Update modeling_tf_rag.py - input_processing - fix prepare_input_for_generation (mostly fix generate bug) - bring back from_pretrained hack in order to test generate * delete colab pieces of code * Show case of greedy "generate" Temporarily change from beam_search test to greedy_search test to show case that TF and PT do get equivalent output. * cosmetic update * correct typos * update * push some progress * make easy check * fix rag save from pretrained * Update src/transformers/modeling_tf_utils.py * remove commented out lines * delete unnecessary lines * add simple test case for nq_checkpoint Add nq_checkpoint test to show that current version without hack still fails * temporarily put ugly hack back again * Add TFRagSequenceForGeneration!! * __init__.py , import TFRagSequenceForGeneration * Add TFRagSequence tests! * rag init.py - add TFRagSequenceForGeneration * fix from_pretrained * fix prepare_inputs_for_generation * Beam search for RagToken! * minor clean up * add tf.cast in TFRagModel * More tf.cast * Add all remaining tests (still have issues) * delete all T5 related * make style * fix load weight prefix * fix bart * fix return_dict for tf_rag make all tests pass .. Hooray * fix some tests * fix code quality * fix qualtiy check * finish tests tf rag * add tf rag to docs * remove TFT5 from docstring Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * remove TFT5 from docstring Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Delete outdated comments Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * improve doc strings * add generative model classes * fix adjust token logic * refactor generate for TFRag * using shape_list, not _get_shape Co-authored-by: Julien Plu <plu.julien@gmail.com> * axis=[1]->axis=1 * delete NEED_HELP comment * improve readability Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * improve readability Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * improve readability Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Indicating model is in a developing state in docstrings As suggested by Julien * small last changes * apply sylvains suggestions * finish tf rag Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: patrickvonplaten <patrick@huggingface.co> Co-authored-by: Julien Plu <plu.julien@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
118 lines
5.3 KiB
ReStructuredText
118 lines
5.3 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
RAG
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Retrieval-augmented generation ("RAG") models combine the powers of pretrained dense retrieval (DPR) and
|
|
sequence-to-sequence models. RAG models retrieve documents, pass them to a seq2seq model, then marginalize to generate
|
|
outputs. The retriever and seq2seq modules are initialized from pretrained models, and fine-tuned jointly, allowing
|
|
both retrieval and generation to adapt to downstream tasks.
|
|
|
|
It is based on the paper `Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
|
|
<https://arxiv.org/abs/2005.11401>`__ by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
|
|
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve
|
|
state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely
|
|
manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind
|
|
task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge
|
|
remain open research problems. Pre-trained models with a differentiable access mechanism to explicit nonparametric
|
|
memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a
|
|
general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) — models which combine pre-trained
|
|
parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a
|
|
pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a
|
|
pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages
|
|
across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our
|
|
models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks,
|
|
outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation
|
|
tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art
|
|
parametric-only seq2seq baseline.*
|
|
|
|
|
|
|
|
RagConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagConfig
|
|
:members:
|
|
|
|
|
|
RagTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagTokenizer
|
|
:members:
|
|
|
|
|
|
Rag specific outputs
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMMarginOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMOutput
|
|
:members:
|
|
|
|
RagRetriever
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagRetriever
|
|
:members:
|
|
|
|
|
|
RagModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagModel
|
|
:members: forward
|
|
|
|
|
|
RagSequenceForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagSequenceForGeneration
|
|
:members: forward, generate
|
|
|
|
|
|
RagTokenForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagTokenForGeneration
|
|
:members: forward, generate
|
|
|
|
|
|
TFRagModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFRagModel
|
|
:members: call
|
|
|
|
|
|
TFRagSequenceForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFRagSequenceForGeneration
|
|
:members: call, generate
|
|
|
|
|
|
TFRagTokenForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFRagTokenForGeneration
|
|
:members: call, generate
|