mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* Integrate DeBERTa v2(the 1.5B model surpassed human performance on SuperGLUE); Add DeBERTa v2 900M,1.5B models; * DeBERTa-v2 * Fix v2 model loading issue (#10129) * Doc members * Update src/transformers/models/deberta/modeling_deberta.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Address Sylvain's comments * Address Patrick's comments Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Style Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr> Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
119 lines
5.8 KiB
ReStructuredText
119 lines
5.8 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
DeBERTa-v2
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
|
<https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
|
|
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
|
|
|
|
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
|
|
RoBERTa.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
|
|
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
|
|
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
|
|
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
|
|
position, respectively, and the attention weights among words are computed using disentangled matrices on their
|
|
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
|
|
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
|
|
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
|
|
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
|
|
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
|
|
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
|
|
|
|
|
|
The following information is visible directly on the [original implementation
|
|
repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes
|
|
the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can
|
|
find more details about this submission in the authors'
|
|
[blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/)
|
|
|
|
New in v2:
|
|
|
|
- **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
|
|
Instead of a GPT2-based tokenizer, the tokenizer is now
|
|
[sentencepiece-based](https://github.com/google/sentencepiece) tokenizer.
|
|
- **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first
|
|
transformer layer to better learn the local dependency of input tokens.
|
|
- **Sharing position projection matrix with content projection matrix in attention layer** Based on previous
|
|
experiments, this can save parameters without affecting the performance.
|
|
- **Apply bucket to encode relative postions** The DeBERTa-v2 model uses log bucket to encode relative positions
|
|
similar to T5.
|
|
- **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the
|
|
performance of downstream tasks.
|
|
|
|
The original code can be found `here <https://github.com/microsoft/DeBERTa>`__.
|
|
|
|
|
|
DebertaV2Config
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2Config
|
|
:members:
|
|
|
|
|
|
DebertaV2Tokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2Tokenizer
|
|
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
|
|
create_token_type_ids_from_sequences, save_vocabulary
|
|
|
|
|
|
DebertaV2Model
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2Model
|
|
:members: forward
|
|
|
|
|
|
DebertaV2PreTrainedModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2PreTrainedModel
|
|
:members: forward
|
|
|
|
|
|
DebertaV2ForMaskedLM
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2ForMaskedLM
|
|
:members: forward
|
|
|
|
|
|
DebertaV2ForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2ForSequenceClassification
|
|
:members: forward
|
|
|
|
|
|
DebertaV2ForTokenClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2ForTokenClassification
|
|
:members: forward
|
|
|
|
|
|
DebertaV2ForQuestionAnswering
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaV2ForQuestionAnswering
|
|
:members: forward
|