mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
106 lines
3.5 KiB
Python
106 lines
3.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The HugginFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Convert BERT checkpoint."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import re
|
|
import argparse
|
|
import tensorflow as tf
|
|
import torch
|
|
import numpy as np
|
|
|
|
from modeling import BertConfig, BertModel
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--tf_checkpoint_path",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "Path the TensorFlow checkpoint path.")
|
|
parser.add_argument("--bert_config_file",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The config json file corresponding to the pre-trained BERT model. \n"
|
|
"This specifies the model architecture.")
|
|
parser.add_argument("--pytorch_dump_path",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "Path to the output PyTorch model.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
def convert():
|
|
# Initialise PyTorch model
|
|
config = BertConfig.from_json_file(args.bert_config_file)
|
|
model = BertModel(config)
|
|
|
|
# Load weights from TF model
|
|
path = args.tf_checkpoint_path
|
|
print("Converting TensorFlow checkpoint from {}".format(path))
|
|
|
|
init_vars = tf.train.list_variables(path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
print("Loading {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(path, name)
|
|
print("Numpy array shape {}".format(array.shape))
|
|
names.append(name)
|
|
arrays.append(array)
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name[5:] # skip "bert/"
|
|
print("Loading {}".format(name))
|
|
name = name.split('/')
|
|
if name[0] in ['redictions', 'eq_relationship']:
|
|
print("Skipping")
|
|
continue
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
|
|
l = re.split(r'_(\d+)', m_name)
|
|
else:
|
|
l = [m_name]
|
|
if l[0] == 'kernel':
|
|
pointer = getattr(pointer, 'weight')
|
|
else:
|
|
pointer = getattr(pointer, l[0])
|
|
if len(l) >= 2:
|
|
num = int(l[1])
|
|
pointer = pointer[num]
|
|
if m_name[-11:] == '_embeddings':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif m_name == 'kernel':
|
|
array = np.transpose(array)
|
|
try:
|
|
assert pointer.shape == array.shape
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
pointer.data = torch.from_numpy(array)
|
|
|
|
# Save pytorch-model
|
|
torch.save(model.state_dict(), args.pytorch_dump_path)
|
|
|
|
if __name__ == "__main__":
|
|
convert()
|