transformers/tests/test_pipeline_mixin.py
Yih-Dar 871c31a6f1
🔥Rework pipeline testing by removing PipelineTestCaseMeta 🚀 (#21516)
* Add PipelineTesterMixin

* remove class PipelineTestCaseMeta

* move validate_test_components

* Add for ViT

* Add to SPECIAL_MODULE_TO_TEST_MAP

* style and quality

* Add feature-extraction

* update

* raise instead of skip

* add tiny_model_summary.json

* more explicit

* skip tasks not in mapping

* add availability check

* Add Copyright

* A way to diable irrelevant tests

* update with main

* remove disable_irrelevant_tests

* skip tests

* better skip message

* better skip message

* Add all pipeline task tests

* revert

* Import PipelineTesterMixin

* subclass test classes with PipelineTesterMixin

* Add pipieline_model_mapping

* Fix import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix one more import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix test issues

* Fix import requirements

* Fix mapping for MobileViTModelTest

* Update

* Better skip message

* pipieline_model_mapping could not be None

* Remove some PipelineTesterMixin

* Fix typo

* revert tests_fetcher.py

* update

* rename

* revert

* Remove PipelineTestCaseMeta from ZeroShotAudioClassificationPipelineTests

* style and quality

* test fetcher for all pipeline/model tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 19:40:57 +01:00

514 lines
24 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import random
from pathlib import Path
from transformers.testing_utils import (
require_decord,
require_pytesseract,
require_timm,
require_torch,
require_torch_or_tf,
require_vision,
)
from transformers.utils import direct_transformers_import
from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
from .pipelines.test_pipelines_conversational import ConversationalPipelineTests
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
from .pipelines.test_pipelines_question_answering import QAPipelineTests
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
from .pipelines.test_pipelines_translation import TranslationPipelineTests
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests
pipeline_test_mapping = {
"audio-classification": {"test": AudioClassificationPipelineTests},
"automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
"conversational": {"test": ConversationalPipelineTests},
"depth-estimation": {"test": DepthEstimationPipelineTests},
"document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
"feature-extraction": {"test": FeatureExtractionPipelineTests},
"fill-mask": {"test": FillMaskPipelineTests},
"image-classification": {"test": ImageClassificationPipelineTests},
"image-segmentation": {"test": ImageSegmentationPipelineTests},
"image-to-text": {"test": ImageToTextPipelineTests},
"object-detection": {"test": ObjectDetectionPipelineTests},
"question-answering": {"test": QAPipelineTests},
"summarization": {"test": SummarizationPipelineTests},
"table-question-answering": {"test": TQAPipelineTests},
"text2text-generation": {"test": Text2TextGenerationPipelineTests},
"text-classification": {"test": TextClassificationPipelineTests},
"text-generation": {"test": TextGenerationPipelineTests},
"token-classification": {"test": TokenClassificationPipelineTests},
"translation": {"test": TranslationPipelineTests},
"video-classification": {"test": VideoClassificationPipelineTests},
"visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
"zero-shot": {"test": ZeroShotClassificationPipelineTests},
"zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
"zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
"zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
}
for task, task_info in pipeline_test_mapping.items():
test = task_info["test"]
task_info["mapping"] = {
"pt": getattr(test, "model_mapping", None),
"tf": getattr(test, "tf_model_mapping", None),
}
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
tiny_model_summary = json.load(fp)
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
class PipelineTesterMixin:
model_tester = None
pipeline_model_mapping = None
supported_frameworks = ["pt", "tf"]
def run_task_tests(self, task):
"""Run pipeline tests for a specific `task`
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
"""
if task not in self.pipeline_model_mapping:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in "
f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
)
model_architectures = self.pipeline_model_mapping[task]
if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,)
if not isinstance(model_architectures, tuple):
raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")
for model_architecture in model_architectures:
model_arch_name = model_architecture.__name__
# Get the canonical name
for _prefix in ["Flax", "TF"]:
if model_arch_name.startswith(_prefix):
model_arch_name = model_arch_name[len(_prefix) :]
break
tokenizer_names = []
processor_names = []
if model_arch_name in tiny_model_summary:
tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
processor_names = tiny_model_summary[model_arch_name]["processor_classes"]
# Adding `None` (if empty) so we can generate tests
tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names
processor_names = [None] if len(processor_names) == 0 else processor_names
repo_name = f"tiny-random-{model_arch_name}"
self.run_model_pipeline_tests(task, repo_name, model_architecture, tokenizer_names, processor_names)
def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_names (`List[str]`):
A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
processor_names (`List[str]`):
A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`.
"""
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
for tokenizer_name in tokenizer_names:
for processor_name in processor_names:
if is_test_to_skip(
pipeline_test_class_name,
model_architecture.config_class,
model_architecture,
tokenizer_name,
processor_name,
):
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
f"`{tokenizer_name}` | processor `{processor_name}`."
)
self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name)
def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name
The model will be loaded from a model repository on the Hub.
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_name (`str`):
The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
processor_name (`str`):
The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`.
"""
repo_id = f"hf-internal-testing/{repo_name}"
tokenizer = None
if tokenizer_name is not None:
tokenizer_class = getattr(transformers_module, tokenizer_name)
tokenizer = tokenizer_class.from_pretrained(repo_id)
processor = None
if processor_name is not None:
processor_class = getattr(transformers_module, processor_name)
# If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail.
try:
processor = processor_class.from_pretrained(repo_id)
except Exception:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the "
f"processor from `{repo_id}` with `{processor_name}`."
)
# TODO: Maybe not upload such problematic tiny models to Hub.
if tokenizer is None and processor is None:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
f"any tokenizer / processor from `{repo_id}`."
)
# TODO: We should check if a model file is on the Hub repo. instead.
try:
model = model_architecture.from_pretrained(repo_id)
except Exception:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
f"the model from `{repo_id}` with `{model_architecture}`."
)
# validate
validate_test_components(self, task, model, tokenizer, processor)
if hasattr(model, "eval"):
model = model.eval()
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
task_test = pipeline_test_mapping[task]["test"]()
pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor)
if pipeline is None:
# The test can disable itself, but it should be very marginal
# Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the "
"pipeline for testing."
)
task_test.run_pipeline_test(pipeline, examples)
def run_batch_test(pipeline, examples):
# Need to copy because `Conversation` are stateful
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
return # No batching for this and it's OK
# 10 examples with batch size 4 means there needs to be a unfinished batch
# which is important for the unbatcher
def data(n):
for _ in range(n):
# Need to copy because Conversation object is mutated
yield copy.deepcopy(random.choice(examples))
out = []
for item in pipeline(data(10), batch_size=4):
out.append(item)
self.assertEqual(len(out), 10)
run_batch_test(pipeline, examples)
@require_torch
def test_pipeline_audio_classification(self):
self.run_task_tests(task="audio-classification")
def test_pipeline_automatic_speech_recognition(self):
self.run_task_tests(task="automatic-speech-recognition")
def test_pipeline_conversational(self):
self.run_task_tests(task="conversational")
@require_vision
@require_timm
@require_torch
def test_pipeline_depth_estimation(self):
self.run_task_tests(task="depth-estimation")
@require_pytesseract
@require_torch
@require_vision
def test_pipeline_document_question_answering(self):
self.run_task_tests(task="document-question-answering")
def test_pipeline_feature_extraction(self):
self.run_task_tests(task="feature-extraction")
def test_pipeline_fill_mask(self):
self.run_task_tests(task="fill-mask")
@require_torch_or_tf
@require_vision
def test_pipeline_image_classification(self):
self.run_task_tests(task="image-classification")
@require_vision
@require_timm
@require_torch
def test_pipeline_image_segmentation(self):
self.run_task_tests(task="image-segmentation")
@require_vision
def test_pipeline_image_to_text(self):
self.run_task_tests(task="image-to-text")
@require_vision
@require_timm
@require_torch
def test_pipeline_object_detection(self):
self.run_task_tests(task="object-detection")
def test_pipeline_question_answering(self):
self.run_task_tests(task="question-answering")
def test_pipeline_summarization(self):
self.run_task_tests(task="summarization")
def test_pipeline_table_question_answering(self):
self.run_task_tests(task="table-question-answering")
def test_pipeline_text2text_generation(self):
self.run_task_tests(task="text2text-generation")
def test_pipeline_text_classification(self):
self.run_task_tests(task="text-classification")
@require_torch_or_tf
def test_pipeline_text_generation(self):
self.run_task_tests(task="text-generation")
def test_pipeline_token_classification(self):
self.run_task_tests(task="token-classification")
def test_pipeline_translation(self):
self.run_task_tests(task="translation")
@require_torch_or_tf
@require_vision
@require_decord
def test_pipeline_video_classification(self):
self.run_task_tests(task="video-classification")
@require_torch
@require_vision
def test_pipeline_visual_question_answering(self):
self.run_task_tests(task="visual-question-answering")
def test_pipeline_zero_shot(self):
self.run_task_tests(task="zero-shot")
@require_torch
def test_pipeline_zero_shot_audio_classification(self):
self.run_task_tests(task="zero-shot-audio-classification")
@require_vision
def test_pipeline_zero_shot_image_classification(self):
self.run_task_tests(task="zero-shot-image-classification")
@require_vision
@require_torch
def test_pipeline_zero_shot_object_detection(self):
self.run_task_tests(task="zero-shot-object-detection")
def validate_test_components(test_case, task, model, tokenizer, processor):
# TODO: Move this to tiny model creation script
# head-specific (within a model type) necessary changes to the config
# 1. for `BlenderbotForCausalLM`
if model.__class__.__name__ == "BlenderbotForCausalLM":
model.config.encoder_no_repeat_ngram_size = 0
# TODO: Change the tiny model creation script: don't create models with problematic tokenizers
# Avoid `IndexError` in embedding layers
CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
if tokenizer is not None:
config_vocab_size = getattr(model.config, "vocab_size", None)
# For CLIP-like models
if config_vocab_size is None and hasattr(model.config, "text_config"):
config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
raise ValueError(
"Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
)
# TODO: Remove tiny models from the Hub which have problematic tokenizers (but still keep this block)
if config_vocab_size is not None and len(tokenizer) > config_vocab_size:
test_case.skipTest(
f"{test_case.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: tokenizer "
f"(`{tokenizer.__class__.__name__}`) has {len(tokenizer)} tokens which is greater than "
f"`config_vocab_size` ({config_vocab_size}). Something is wrong."
)
def is_test_to_skip(test_casse_name, config_class, model_architecture, tokenizer_name, processor_name):
"""Some tests are just not working"""
to_skip = False
if config_class.__name__ == "RoCBertConfig" and test_casse_name in [
"FillMaskPipelineTests",
"FeatureExtractionPipelineTests",
"TextClassificationPipelineTests",
"TokenClassificationPipelineTests",
]:
# Get error: IndexError: index out of range in self.
# `word_shape_file` and `word_pronunciation_file` should be shrunk during tiny model creation,
# otherwise `IndexError` could occur in some embedding layers. Skip for now until this model has
# more usage.
to_skip = True
elif config_class.__name__ in ["LayoutLMv3Config", "LiltConfig"]:
# Get error: ValueError: Words must be of type `List[str]`. Previously, `LayoutLMv3` is not
# used in pipeline tests as it could not find a checkpoint
# TODO: check and fix if possible
to_skip = True
# config/model class we decide to skip
elif config_class.__name__ in ["TapasConfig"]:
# Get error: AssertionError: Table must be of type pd.DataFrame. Also, the tiny model has large
# vocab size as the fast tokenizer could not be converted. Previous, `Tapas` is not used in
# pipeline tests due to the same reason.
# TODO: check and fix if possible
to_skip = True
# TODO: check and fix if possible
if not to_skip and tokenizer_name is not None:
if (
test_casse_name == "QAPipelineTests"
and not tokenizer_name.endswith("Fast")
and config_class.__name__
in [
"FlaubertConfig",
"GPTJConfig",
"LongformerConfig",
"MvpConfig",
"OPTConfig",
"ReformerConfig",
"XLMConfig",
]
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
to_skip = True
elif test_casse_name == "ZeroShotClassificationPipelineTests" and config_class.__name__ in [
"CTRLConfig",
"OpenAIGPTConfig",
]:
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` and `OpenAIGPTConfig` were never used in pipeline tests, either because of a missing
# checkpoint or because a tiny config could not be created
to_skip = True
elif test_casse_name == "TranslationPipelineTests" and config_class.__name__ in [
"M2M100Config",
"PLBartConfig",
]:
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` and `PLBartConfig` were never used in pipeline tests: cannot create a simple tokenizer
to_skip = True
elif test_casse_name == "TextGenerationPipelineTests" and config_class.__name__ in [
"ProphetNetConfig",
"TransfoXLConfig",
]:
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` and `ProphetNetConfig` were never used in pipeline tests: cannot create a simple
# tokenizer.
to_skip = True
elif test_casse_name == "FillMaskPipelineTests" and config_class.__name__ in [
"FlaubertConfig",
"XLMConfig",
]:
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `FlaubertConfig` and `TransfoXLConfig` were never used in pipeline tests: cannot create a simple
# tokenizer
to_skip = True
elif test_casse_name == "TextGenerationPipelineTests" and model_architecture.__name__ in [
"TFRoFormerForCausalLM"
]:
# TODO: add `prepare_inputs_for_generation` for `TFRoFormerForCausalLM`
to_skip = True
elif test_casse_name == "QAPipelineTests" and model_architecture.__name__ in ["FNetForQuestionAnswering"]:
# TODO: The change in `base.py` in the PR #21132 (https://github.com/huggingface/transformers/pull/21132)
# fails this test case. Skip for now - a fix for this along with the initial changes in PR #20426 is
# too much. Let `ydshieh` to fix it ASAP once #20426 is merged.
to_skip = True
elif config_class.__name__ == "LayoutLMv2Config" and test_casse_name in [
"QAPipelineTests",
"TextClassificationPipelineTests",
"TokenClassificationPipelineTests",
"ZeroShotClassificationPipelineTests",
]:
# `LayoutLMv2Config` was never used in pipeline tests (`test_pt_LayoutLMv2Config_XXX`) due to lack of tiny
# config. With new tiny model creation, it is available, but we need to fix the failed tests.
to_skip = True
elif test_casse_name == "DocumentQuestionAnsweringPipelineTests" and not tokenizer_name.endswith("Fast"):
# This pipeline uses `sequence_ids()` which is only available for fast tokenizers.
to_skip = True
return to_skip