transformers/tests/pipelines/test_pipelines_text_classification.py
Yih-Dar 871c31a6f1
🔥Rework pipeline testing by removing PipelineTestCaseMeta 🚀 (#21516)
* Add PipelineTesterMixin

* remove class PipelineTestCaseMeta

* move validate_test_components

* Add for ViT

* Add to SPECIAL_MODULE_TO_TEST_MAP

* style and quality

* Add feature-extraction

* update

* raise instead of skip

* add tiny_model_summary.json

* more explicit

* skip tasks not in mapping

* add availability check

* Add Copyright

* A way to diable irrelevant tests

* update with main

* remove disable_irrelevant_tests

* skip tests

* better skip message

* better skip message

* Add all pipeline task tests

* revert

* Import PipelineTesterMixin

* subclass test classes with PipelineTesterMixin

* Add pipieline_model_mapping

* Fix import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix one more import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix test issues

* Fix import requirements

* Fix mapping for MobileViTModelTest

* Update

* Better skip message

* pipieline_model_mapping could not be None

* Remove some PipelineTesterMixin

* Fix typo

* revert tests_fetcher.py

* update

* rename

* revert

* Remove PipelineTestCaseMeta from ZeroShotAudioClassificationPipelineTests

* style and quality

* test fetcher for all pipeline/model tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 19:40:57 +01:00

187 lines
7.8 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
class TextClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
@require_torch
def test_small_model_pt(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
outputs = text_classifier("This is great !", top_k=2)
self.assertEqual(
nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]
)
outputs = text_classifier(["This is great !", "This is bad"], top_k=2)
self.assertEqual(
nested_simplify(outputs),
[
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
],
)
outputs = text_classifier("This is great !", top_k=1)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
# Legacy behavior
outputs = text_classifier("This is great !", return_all_scores=False)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
outputs = text_classifier("This is great !", return_all_scores=True)
self.assertEqual(
nested_simplify(outputs), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]]
)
outputs = text_classifier(["This is great !", "Something else"], return_all_scores=True)
self.assertEqual(
nested_simplify(outputs),
[
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
],
)
outputs = text_classifier(["This is great !", "Something else"], return_all_scores=False)
self.assertEqual(
nested_simplify(outputs),
[
{"label": "LABEL_0", "score": 0.504},
{"label": "LABEL_0", "score": 0.504},
],
)
@require_torch
def test_accepts_torch_device(self):
import torch
text_classifier = pipeline(
task="text-classification",
model="hf-internal-testing/tiny-random-distilbert",
framework="pt",
device=torch.device("cpu"),
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@require_tf
def test_small_model_tf(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@slow
@require_torch
def test_pt_bert(self):
text_classifier = pipeline("text-classification")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
@slow
@require_tf
def test_tf_bert(self):
text_classifier = pipeline("text-classification", framework="tf")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
def get_test_pipeline(self, model, tokenizer, processor):
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
return text_classifier, ["HuggingFace is in", "This is another test"]
def run_pipeline_test(self, text_classifier, _):
model = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
valid_inputs = "HuggingFace is in"
outputs = text_classifier(valid_inputs)
self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
valid_inputs = ["HuggingFace is in ", "Paris is in France"]
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
self.assertTrue(outputs[1]["label"] in model.config.id2label.values())
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
outputs = text_classifier(valid_inputs, top_k=None)
N = len(model.config.id2label.values())
self.assertEqual(
nested_simplify(outputs),
[[{"label": ANY(str), "score": ANY(float)}] * N, [{"label": ANY(str), "score": ANY(float)}] * N],
)
valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
{"label": ANY(str), "score": ANY(float)},
)
self.assertTrue(outputs["label"] in model.config.id2label.values())
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
invalid_input = [["HuggingFace is in ", "Paris is in France"]]
with self.assertRaises(ValueError):
text_classifier(invalid_input)
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
outputs = text_classifier([[["HuggingFace is in ", "Paris is in France"]]])
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())