transformers/docs/source/main_classes/output.rst
Sylvain Gugger 7fad617dc1
Document model outputs (#5673)
* Document model outputs

* Update docs/source/main_classes/output.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-07-10 17:31:02 -04:00

142 lines
4.2 KiB
ReStructuredText

Model outputs
-------------
PyTorch models have outputs that are instances of subclasses of :class:`~transformers.file_utils.ModelOutput`. Those
are data structures containing all the information returned by the model, but that can also be used as tuples or
dictionaries.
Let's see of this looks on an example:
.. code-block::
from transformers import BertTokenizer, BertForSequenceClassification
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(**inputs, labels=labels)
The ``outputs`` object is a :class:`~transformers.modeling_outputs.SequenceClassifierOutput`, as we can see in the
documentation of that class below, it means it has an optional ``loss``, a ``logits`` an optional ``hidden_states`` and
an optional ``attentions`` attribute. Here we have the ``loss`` since we passed along ``labels``, but we don't have
``hidden_states`` and ``attentions`` because we didn't pass ``output_hidden_states=True`` or
``output_attentions=True``.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get ``None``. Here for instance ``outputs.loss`` is the loss computed by the model, and ``outputs.attentions`` is
``None``.
When considering our ``outputs`` object as tuple, it only considers the attributes that don't have ``None`` values.
Here for instance, it has two elements, ``loss`` then ``logits``, so
.. code-block::
outputs[:2]
will return the tuple ``(outputs.loss, outputs.logits)`` for instance.
When considering our ``outputs`` object as dictionary, it only considers the attributes that don't have ``None``
values. Here for instance, it has two keys that are ``loss`` and ``logits``.
We document here the generic model outputs that are used by more than one model type. Specific output types are
documented on their corresponding model page.
``ModelOutput``
~~~~~~~~~~~~~~~
.. autoclass:: transformers.file_utils.ModelOutput
:members:
``BaseModelOutput``
~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutput
:members:
``BaseModelOutputWithPooling``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPooling
:members:
``BaseModelOutputWithPast``
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPast
:members:
``Seq2SeqModelOutput``
~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqModelOutput
:members:
``CausalLMOutput``
~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.CausalLMOutput
:members:
``CausalLMOutputWithPast``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.CausalLMOutputWithPast
:members:
``MaskedLMOutput``
~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.MaskedLMOutput
:members:
``Seq2SeqLMOutput``
~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqLMOutput
:members:
``NextSentencePredictorOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.NextSentencePredictorOutput
:members:
``SequenceClassifierOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.SequenceClassifierOutput
:members:
``Seq2SeqSequenceClassifierOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput
:members:
``MultipleChoiceModelOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.MultipleChoiceModelOutput
:members:
``TokenClassifierOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.TokenClassifierOutput
:members:
``QuestionAnsweringModelOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.QuestionAnsweringModelOutput
:members:
``Seq2SeqQuestionAnsweringModelOutput``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput
:members: