transformers/tests/models/mistral/test_modeling_mistral.py
fxmarty 80377eb018
F.scaled_dot_product_attention support (#26572)
* add sdpa

* wip

* cleaning

* add ref

* yet more cleaning

* and more :)

* wip llama

* working llama

* add output_attentions=True support

* bigcode sdpa support

* fixes

* gpt-bigcode support, require torch>=2.1.1

* add falcon support

* fix conflicts falcon

* style

* fix attention_mask definition

* remove output_attentions from attnmaskconverter

* support whisper without removing any Copied from statement

* fix mbart default to eager renaming

* fix typo in falcon

* fix is_causal in SDPA

* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained

* add warnings when falling back on the manual implementation

* precise doc

* wip replace _flash_attn_enabled by config.attn_implementation

* fix typo

* add tests

* style

* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace

* obey to config.attn_implementation if a config is passed in from_pretrained

* fix is_torch_sdpa_available when torch is not installed

* remove dead code

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bart/modeling_bart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove duplicate pretraining_tp code

* add dropout in llama

* precise comment on attn_mask

* add fmt: off for _unmask_unattended docstring

* precise num_masks comment

* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion

* cleanup modeling_utils

* backward compatibility

* fix style as requested

* style

* improve documentation

* test pass

* style

* add _unmask_unattended tests

* skip meaningless tests for idefics

* hard_check SDPA requirements when specifically requested

* standardize the use if XXX_ATTENTION_CLASSES

* fix SDPA bug with mem-efficient backend on CUDA when using fp32

* fix test

* rely on SDPA is_causal parameter to handle the causal mask in some cases

* fix FALCON_ATTENTION_CLASSES

* remove _flash_attn_2_enabled occurences

* fix test

* add OPT to the list of supported flash models

* improve test

* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test

* remove remaining _flash_attn_2_enabled occurence

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/perf_infer_gpu_one.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove use_attn_implementation

* fix docstring & slight bug

* make attn_implementation internal (_attn_implementation)

* typos

* fix tests

* deprecate use_flash_attention_2=True

* fix test

* add back llama that was removed by mistake

* fix tests

* remove _flash_attn_2_enabled occurences bis

* add check & test that passed attn_implementation is valid

* fix falcon torchscript export

* fix device of mask in tests

* add tip about torch.jit.trace and move bt doc below sdpa

* fix parameterized.expand order

* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there

* update sdpaattention class with the new cache

* Update src/transformers/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bark/modeling_bark.py

* address review comments

* WIP torch.jit.trace fix. left: test both eager & sdpa

* add test for torch.jit.trace for both eager/sdpa

* fix falcon with torch==2.0 that needs to use sdpa

* fix doc

* hopefully last fix

* fix key_value_length that has no default now in mask converter

* is it flacky?

* fix speculative decoding bug

* tests do pass

* fix following #27907

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-09 05:38:14 +09:00

530 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Mistral model. """
import gc
import tempfile
import unittest
import pytest
from transformers import AutoTokenizer, MistralConfig, is_torch_available
from transformers.testing_utils import (
backend_empty_cache,
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MistralForCausalLM,
MistralForSequenceClassification,
MistralModel,
)
class MistralModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return MistralConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mistral
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MistralModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mistral
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = MistralModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mistral
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = MistralForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mistral
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = MistralForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class MistralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(MistralModel, MistralForCausalLM, MistralForSequenceClassification) if is_torch_available() else ()
)
all_generative_model_classes = (MistralForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": MistralModel,
"text-classification": MistralForSequenceClassification,
"text-generation": MistralForCausalLM,
"zero-shot": MistralForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = MistralModelTester(self)
self.config_tester = ConfigTester(self, config_class=MistralConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_Mistral_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
print(config)
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = MistralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Mistral_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = MistralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Mistral_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = MistralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("Mistral buffers include complex numbers, which breaks this test")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip("Mistral uses GQA on all models so the KV cache is a non standard format")
def test_past_key_values_format(self):
pass
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_padding_right(self):
import torch
for model_class in self.all_generative_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
with self.assertRaises(ValueError):
_ = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
import torch
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Mistral apparently does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_padding_right(self):
self.skipTest("Mistral flash attention does not support right padding")
@require_torch
class MistralIntegrationTest(unittest.TestCase):
@slow
def test_model_7b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
with torch.no_grad():
out = model(input_ids).logits.cpu()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]])
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([-5.8781, -5.8616, -0.1052, -4.7200, -5.8781, -5.8774, -5.8773, -5.8777, -5.8781, -5.8780, -5.8781, -5.8779, -1.0787, 1.7583, -5.8779, -5.8780, -5.8783, -5.8778, -5.8776, -5.8781, -5.8784, -5.8778, -5.8778, -5.8777, -5.8779, -5.8778, -5.8776, -5.8780, -5.8779, -5.8781]) # fmt: skip
print(out[0, 0, :30])
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_7b_generation(self):
EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. Im not a big"""
prompt = "My favourite condiment is "
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()
@require_bitsandbytes
@slow
@require_flash_attn
def test_model_7b_long_prompt(self):
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
# An input with 4097 tokens that is above the size of the sliding window
input_ids = [1] + [306, 338] * 2048
model = MistralForCausalLM.from_pretrained(
"mistralai/Mistral-7B-v0.1",
device_map="auto",
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
# Assisted generation
assistant_model = model
assistant_model.generation_config.num_assistant_tokens = 2
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
del assistant_model
del model
backend_empty_cache(torch_device)
gc.collect()