mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00

This change is mostly autogenerated with: $ python -m autoflake --in-place --recursive examples templates transformers utils hubconf.py setup.py I made minor changes in the generated diff.
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Transformer XL configuration """
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import logging
|
|
|
|
from .configuration_utils import PretrainedConfig
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"transfo-xl-wt103": "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
|
|
}
|
|
|
|
|
|
class TransfoXLConfig(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `TransfoXLModel`.
|
|
|
|
Args:
|
|
vocab_size: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
|
|
cutoffs: cutoffs for the adaptive softmax
|
|
d_model: Dimensionality of the model's hidden states.
|
|
d_embed: Dimensionality of the embeddings
|
|
d_head: Dimensionality of the model's heads.
|
|
div_val: divident value for adapative input and softmax
|
|
pre_lnorm: apply LayerNorm to the input instead of the output
|
|
d_inner: Inner dimension in FF
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
tgt_len: number of tokens to predict
|
|
ext_len: length of the extended context
|
|
mem_len: length of the retained previous heads
|
|
same_length: use the same attn length for all tokens
|
|
proj_share_all_but_first: True to share all but first projs, False not to share.
|
|
attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
|
|
clamp_len: use the same pos embeddings after clamp_len
|
|
sample_softmax: number of samples in sampled softmax
|
|
adaptive: use adaptive softmax
|
|
tie_weight: tie the word embedding and softmax weights
|
|
dropout: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
dropatt: The dropout ratio for the attention probabilities.
|
|
untie_r: untie relative position biases
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
init: parameter initializer to use
|
|
init_range: parameters initialized by U(-init_range, init_range).
|
|
proj_init_std: parameters initialized by N(0, init_std)
|
|
init_std: parameters initialized by N(0, init_std)
|
|
"""
|
|
|
|
pretrained_config_archive_map = TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=267735,
|
|
cutoffs=[20000, 40000, 200000],
|
|
d_model=1024,
|
|
d_embed=1024,
|
|
n_head=16,
|
|
d_head=64,
|
|
d_inner=4096,
|
|
div_val=4,
|
|
pre_lnorm=False,
|
|
n_layer=18,
|
|
tgt_len=128,
|
|
ext_len=0,
|
|
mem_len=1600,
|
|
clamp_len=1000,
|
|
same_length=True,
|
|
proj_share_all_but_first=True,
|
|
attn_type=0,
|
|
sample_softmax=-1,
|
|
adaptive=True,
|
|
tie_weight=True,
|
|
dropout=0.1,
|
|
dropatt=0.0,
|
|
untie_r=True,
|
|
init="normal",
|
|
init_range=0.01,
|
|
proj_init_std=0.01,
|
|
init_std=0.02,
|
|
layer_norm_epsilon=1e-5,
|
|
**kwargs
|
|
):
|
|
"""Constructs TransfoXLConfig.
|
|
"""
|
|
super(TransfoXLConfig, self).__init__(**kwargs)
|
|
self.vocab_size = vocab_size
|
|
self.cutoffs = []
|
|
self.cutoffs.extend(cutoffs)
|
|
self.tie_weight = tie_weight
|
|
if proj_share_all_but_first:
|
|
self.tie_projs = [False] + [True] * len(self.cutoffs)
|
|
else:
|
|
self.tie_projs = [False] + [False] * len(self.cutoffs)
|
|
self.d_model = d_model
|
|
self.d_embed = d_embed
|
|
self.d_head = d_head
|
|
self.d_inner = d_inner
|
|
self.div_val = div_val
|
|
self.pre_lnorm = pre_lnorm
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.tgt_len = tgt_len
|
|
self.ext_len = ext_len
|
|
self.mem_len = mem_len
|
|
self.same_length = same_length
|
|
self.attn_type = attn_type
|
|
self.clamp_len = clamp_len
|
|
self.sample_softmax = sample_softmax
|
|
self.adaptive = adaptive
|
|
self.dropout = dropout
|
|
self.dropatt = dropatt
|
|
self.untie_r = untie_r
|
|
self.init = init
|
|
self.init_range = init_range
|
|
self.proj_init_std = proj_init_std
|
|
self.init_std = init_std
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
|
|
@property
|
|
def max_position_embeddings(self):
|
|
return self.tgt_len + self.ext_len + self.mem_len
|
|
|
|
@property
|
|
def n_token(self): # Backward compatibility
|
|
return self.vocab_size
|
|
|
|
@n_token.setter
|
|
def n_token(self, value): # Backward compatibility
|
|
self.vocab_size = value
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.d_model
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_head
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layer
|