mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* Unbreak optimum-executorch * use static cache if has layer_types but no sliding_window * revert view on kv_arange --------- Co-authored-by: Guang Yang <guangyang@fb.com>
613 lines
26 KiB
Python
613 lines
26 KiB
Python
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch LLaMA model."""
|
|
|
|
import unittest
|
|
|
|
from packaging import version
|
|
|
|
from transformers import AutoTokenizer, StaticCache, is_torch_available
|
|
from transformers.generation.configuration_utils import GenerationConfig
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
cleanup,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
LlamaConfig,
|
|
LlamaForCausalLM,
|
|
LlamaForQuestionAnswering,
|
|
LlamaForSequenceClassification,
|
|
LlamaForTokenClassification,
|
|
LlamaModel,
|
|
LlamaTokenizer,
|
|
)
|
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
|
|
|
|
|
|
class LlamaModelTester(CausalLMModelTester):
|
|
if is_torch_available():
|
|
config_class = LlamaConfig
|
|
base_model_class = LlamaModel
|
|
causal_lm_class = LlamaForCausalLM
|
|
sequence_class = LlamaForSequenceClassification
|
|
token_class = LlamaForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class LlamaModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
LlamaModel,
|
|
LlamaForCausalLM,
|
|
LlamaForSequenceClassification,
|
|
LlamaForQuestionAnswering,
|
|
LlamaForTokenClassification,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": LlamaModel,
|
|
"text-classification": LlamaForSequenceClassification,
|
|
"text-generation": LlamaForCausalLM,
|
|
"zero-shot": LlamaForSequenceClassification,
|
|
"question-answering": LlamaForQuestionAnswering,
|
|
"token-classification": LlamaForTokenClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
|
|
model_tester_class = LlamaModelTester
|
|
rotary_embedding_layer = LlamaRotaryEmbedding # Enables RoPE tests if set
|
|
|
|
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
|
|
# This is because we are hitting edge cases with the causal_mask buffer
|
|
model_split_percents = [0.5, 0.7, 0.8]
|
|
|
|
# used in `test_torch_compile_for_training`
|
|
_torch_compile_train_cls = LlamaForCausalLM if is_torch_available() else None
|
|
|
|
|
|
@require_torch_accelerator
|
|
class LlamaIntegrationTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
# TODO (joao): automatic compilation, i.e. compilation when `cache_implementation="static"` is used, leaves
|
|
# some memory allocated in the cache, which means some object is not being released properly. This causes some
|
|
# unoptimal memory usage, e.g. after certain tests a 7B model in FP16 no longer fits in a 24GB GPU.
|
|
# Investigate the root cause.
|
|
cleanup(torch_device, gc_collect=False)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_llama_3_1_hard(self):
|
|
"""
|
|
An integration test for llama 3.1. It tests against a long output to ensure the subtle numerical differences
|
|
from llama 3.1.'s RoPE can be detected
|
|
"""
|
|
# diff on `EXPECTED_TEXT`:
|
|
# 2024-08-26: updating from torch 2.3.1 to 2.4.0 slightly changes the results.
|
|
EXPECTED_TEXT = (
|
|
"Tell me about the french revolution. The french revolution was a period of radical political and social "
|
|
"upheaval in France that lasted from 1789 until 1799. It was a time of great change and upheaval, marked "
|
|
"by the overthrow of the monarchy, the rise of the middle class, and the eventual establishment of the "
|
|
"First French Republic.\nThe revolution began in 1789 with the Estates-General, a representative "
|
|
"assembly that had not met since 1614. The Third Estate, which represented the common people, "
|
|
"demanded greater representation and eventually broke away to form the National Assembly. This marked "
|
|
"the beginning of the end of the absolute monarchy and the rise of the middle class.\n"
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
"meta-llama/Meta-Llama-3.1-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16
|
|
)
|
|
input_text = ["Tell me about the french revolution."]
|
|
model_inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=128, do_sample=False)
|
|
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(generated_text, EXPECTED_TEXT)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_model_7b_logits_bf16(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
|
|
)
|
|
|
|
with torch.no_grad():
|
|
out = model(torch.tensor([input_ids]).to(torch_device))
|
|
# Expected mean on dim = -1
|
|
|
|
# fmt: off
|
|
expected_means = Expectations(
|
|
{
|
|
("xpu", 3): torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536, 0.8127, -2.9811, 1.2918, -3.3848]]),
|
|
("cuda", 7): torch.tensor([[-6.5061, -4.1147, -4.9669, -3.2038, 0.8069, -2.9694, 1.2864, -3.3786]]),
|
|
("cuda", 8): torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536, 0.8127, -2.9811, 1.2918, -3.3848]])
|
|
})
|
|
|
|
expected_mean = expected_means.get_expectation()
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
expected_mean.to(torch_device),
|
|
out.logits.float().mean(-1),
|
|
atol=1e-2,
|
|
rtol=1e-2
|
|
)
|
|
)
|
|
|
|
# slicing logits[0, 0, 0:15]
|
|
expected_slices = Expectations(
|
|
{
|
|
("xpu", 3): torch.tensor([[-12.5625, -7.1250, -0.6289, -7.8750, -6.9688, -7.8125, -6.5000, -7.4375, -7.6562, -6.9688, -6.0312, -7.0312, -1.8203, 1.8750, -8.5000]]),
|
|
("cuda", 7): torch.tensor([[-12.5000, -7.0625, -0.6289, -7.8750, -6.9688, -7.8125, -6.4688, -7.4375, -7.6875, -6.9375, -6.0312, -7.0000, -1.8594, 1.8438, -8.5000]]),
|
|
("cuda", 8): torch.tensor([[-12.5625, -7.1250, -0.6289, -7.8750, -6.9688, -7.8125, -6.5000, -7.4375, -7.6562, -6.9688, -6.0312, -7.0312, -1.8203, 1.8750, -8.5000]])
|
|
})
|
|
# fmt: on
|
|
expected_slice = expected_slices.get_expectation()
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
expected_slice.to(torch_device),
|
|
out.logits[0, 0, :15].float(),
|
|
atol=1e-2,
|
|
rtol=1e-2,
|
|
)
|
|
)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_model_7b_logits(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
|
|
with torch.no_grad():
|
|
out = model(torch.tensor([input_ids]).to(torch_device))
|
|
|
|
# fmt: off
|
|
# Expected mean on dim = -1
|
|
expected_means = Expectations(
|
|
{
|
|
("xpu", 3): torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456, 0.8261, -3.0124, 1.2971, -3.3641]]),
|
|
("cuda", 7): torch.tensor([[-6.6420, -4.1227, -4.9809, -3.2041, 0.8261, -3.0052, 1.2957, -3.3648]]),
|
|
("cuda", 8): torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456, 0.8261, -3.0124, 1.2971, -3.3641]]),
|
|
})
|
|
|
|
expected_mean = expected_means.get_expectation()
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
expected_mean.to(torch_device),
|
|
out.logits.float().mean(-1),
|
|
atol=1e-2,
|
|
rtol=1e-2
|
|
)
|
|
)
|
|
|
|
# slicing logits[0, 0, 0:15]
|
|
expected_slices = Expectations(
|
|
{
|
|
("xpu", 3): torch.tensor([-12.8281, -7.4609, -0.4668, -8.0703, -7.2539, -8.0078, -6.4961, -7.7734, -7.8516, -7.0352, -6.2188, -7.1367, -1.8564, 1.9922, -8.6328]),
|
|
("cuda", 7): torch.tensor([-12.8125, -7.3359, -0.4846, -8.0234, -7.2383, -7.9922, -6.4805, -7.7344, -7.8125, -7.0078, -6.1797, -7.1094, -1.8633, 1.9736, -8.6016]),
|
|
("cuda", 8): torch.tensor([-12.8281, -7.4609, -0.4668, -8.0703, -7.2539, -8.0078, -6.4961, -7.7734, -7.8516, -7.0352, -6.2188, -7.1367, -1.8564, 1.9922, -8.6328])
|
|
})
|
|
# fmt: on
|
|
|
|
expected_slice = expected_slices.get_expectation()
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
expected_slice.to(torch_device),
|
|
out.logits[0, 0, :15].float(),
|
|
atol=1e-2,
|
|
rtol=1e-2,
|
|
)
|
|
)
|
|
|
|
@slow
|
|
def test_model_7b_dola_generation(self):
|
|
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"Simply put, the theory of relativity states that 1) time and space are relative, and 2) the laws of "
|
|
"physics are the same for all observers in uniform motion relative to one another.\n\nThe theory of "
|
|
"relativity was developed by Albert Einstein in the early 20th century, and it revolutionized our "
|
|
"understanding of space and time."
|
|
)
|
|
prompt = "Simply put, the theory of relativity states that "
|
|
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-chat-hf", device_map="sequential", torch_dtype=torch.float16
|
|
)
|
|
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(
|
|
**model_inputs, max_new_tokens=64, top_p=None, temperature=1, do_sample=False, dola_layers="low"
|
|
)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_read_token
|
|
def test_compile_static_cache(self):
|
|
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
|
|
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
|
|
if version.parse(torch.__version__) < version.parse("2.3.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
NUM_TOKENS_TO_GENERATE = 40
|
|
# Note on `EXPECTED_TEXT_COMPLETION`'s diff: the current value matches the original test if the original test
|
|
# was changed to have a cache of 53 tokens (as opposed to 4096), on Ampere GPUs.
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial "
|
|
"reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
|
|
"theory of relativ",
|
|
"My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, "
|
|
"my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
|
|
]
|
|
|
|
prompts = [
|
|
"Simply put, the theory of relativity states that ",
|
|
"My favorite all time favorite condiment is ketchup.",
|
|
]
|
|
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right")
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
|
|
# Dynamic Cache
|
|
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
|
|
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text)
|
|
|
|
# Static Cache + compile (`generate()` internally compiles each decoding step when static cache is used)
|
|
generated_ids = model.generate(
|
|
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
|
)
|
|
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_export_static_cache(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
from transformers.integrations.executorch import (
|
|
TorchExportableModuleWithStaticCache,
|
|
)
|
|
|
|
llama_models = {
|
|
"meta-llama/Llama-3.2-1B": [
|
|
"Simply put, the theory of relativity states that 1) the speed of light is the same for all "
|
|
"observers, regardless of their location, and 2) the laws of physics are the same for all observers"
|
|
],
|
|
}
|
|
|
|
for llama_model_ckp, EXPECTED_TEXT_COMPLETION in llama_models.items():
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(llama_model_ckp, pad_token="</s>", padding_side="right")
|
|
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
|
|
"input_ids"
|
|
].shape[-1]
|
|
|
|
# Load model
|
|
device = "cpu"
|
|
dtype = torch.bfloat16
|
|
cache_implementation = "static"
|
|
attn_implementation = "sdpa"
|
|
batch_size = 1
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
llama_model_ckp,
|
|
device_map=device,
|
|
torch_dtype=dtype,
|
|
attn_implementation=attn_implementation,
|
|
generation_config=GenerationConfig(
|
|
use_cache=True,
|
|
cache_implementation=cache_implementation,
|
|
max_length=max_generation_length,
|
|
cache_config={
|
|
"batch_size": batch_size,
|
|
"max_cache_len": max_generation_length,
|
|
"device": device,
|
|
},
|
|
),
|
|
)
|
|
|
|
prompts = ["Simply put, the theory of relativity states that "]
|
|
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
prompt_token_ids = prompt_tokens["input_ids"]
|
|
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
|
|
|
|
# Static Cache + export
|
|
from transformers.integrations.executorch import TorchExportableModuleForDecoderOnlyLM
|
|
|
|
exportable_module = TorchExportableModuleForDecoderOnlyLM(model)
|
|
exported_program = exportable_module.export()
|
|
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
|
|
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
|
|
)
|
|
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class Mask4DTestHard(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
def setUp(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
self.model_dtype = torch.float32
|
|
self.tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
|
self.model = LlamaForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device)
|
|
|
|
def get_test_data(self):
|
|
template = "my favorite {}"
|
|
items = ("pet is a", "artist plays a", "name is L") # same number of tokens in each item
|
|
|
|
batch_separate = [template.format(x) for x in items] # 3 separate lines
|
|
batch_shared_prefix = template.format(" ".join(items)) # 1 line with options concatenated
|
|
|
|
input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device)
|
|
input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device)
|
|
|
|
mask_shared_prefix = torch.tensor(
|
|
[
|
|
[
|
|
[
|
|
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
|
|
]
|
|
]
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device)
|
|
|
|
# building custom positions ids based on custom mask
|
|
position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1)
|
|
# effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device)
|
|
|
|
# inverting the mask
|
|
min_dtype = torch.finfo(self.model_dtype).min
|
|
mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype
|
|
|
|
return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix
|
|
|
|
def test_stacked_causal_mask(self):
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self.get_test_data()
|
|
|
|
# regular batch
|
|
logits = self.model.forward(input_ids, position_ids=position_ids).logits
|
|
logits_last = logits[:, -1, :] # last tokens in each batch line
|
|
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
|
|
|
|
# single forward run with 4D custom mask
|
|
logits_shared_prefix = self.model.forward(
|
|
input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix
|
|
).logits
|
|
logits_shared_prefix_last = logits_shared_prefix[
|
|
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
|
|
] # last three tokens
|
|
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
|
|
|
|
self.assertEqual(decoded, decoded_shared_prefix)
|
|
|
|
def test_partial_stacked_causal_mask(self):
|
|
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
|
|
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self.get_test_data()
|
|
|
|
# regular batch
|
|
logits = self.model.forward(input_ids, position_ids=position_ids).logits
|
|
logits_last = logits[:, -1, :] # last tokens in each batch line
|
|
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
|
|
|
|
# 2 forward runs with custom 4D masks
|
|
part_a = 3 # split point
|
|
|
|
input_1a = input_ids_shared_prefix[:, :part_a]
|
|
position_ids_1a = position_ids_shared_prefix[:, :part_a]
|
|
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
|
|
|
|
outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a)
|
|
past_key_values_a = outs_1a["past_key_values"]
|
|
|
|
# Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len])
|
|
input_1b = input_ids_shared_prefix[:, part_a:]
|
|
position_ids_1b = position_ids_shared_prefix[:, part_a:]
|
|
mask_1b = mask_shared_prefix[:, :, part_a:, :]
|
|
outs_1b = self.model.forward(
|
|
input_1b,
|
|
attention_mask=mask_1b,
|
|
position_ids=position_ids_1b,
|
|
past_key_values=past_key_values_a,
|
|
)
|
|
decoded_1b = [
|
|
self.tokenizer.decode(t)
|
|
for t in outs_1b.logits.argmax(-1)[
|
|
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
|
|
]
|
|
]
|
|
self.assertEqual(decoded, decoded_1b)
|
|
|
|
def test_stacked_causal_mask_static_cache(self):
|
|
"""same as above but with StaticCache"""
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self.get_test_data()
|
|
|
|
# regular batch
|
|
logits = self.model.forward(input_ids, position_ids=position_ids).logits
|
|
logits_last = logits[:, -1, :] # last tokens in each batch line
|
|
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
|
|
|
|
# upgrade the model with StaticCache
|
|
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
|
|
past_key_values = StaticCache(
|
|
config=self.model.config,
|
|
max_batch_size=1,
|
|
max_cache_len=max_cache_len,
|
|
device=torch_device,
|
|
dtype=self.model.dtype,
|
|
)
|
|
|
|
padded_attention_mask = torch.nn.functional.pad(
|
|
input=mask_shared_prefix,
|
|
pad=(0, max_cache_len - mask_shared_prefix.shape[-1]),
|
|
mode="constant",
|
|
value=torch.finfo(self.model_dtype).min,
|
|
)
|
|
|
|
# single forward run with 4D custom mask
|
|
logits_shared_prefix = self.model.forward(
|
|
input_ids_shared_prefix,
|
|
attention_mask=padded_attention_mask,
|
|
position_ids=position_ids_shared_prefix,
|
|
cache_position=torch.arange(input_ids_shared_prefix.shape[-1], device=torch_device),
|
|
past_key_values=past_key_values,
|
|
).logits
|
|
logits_shared_prefix_last = logits_shared_prefix[
|
|
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
|
|
] # last three tokens
|
|
decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]
|
|
|
|
self.assertEqual(decoded, decoded_shared_prefix)
|
|
|
|
def test_partial_stacked_causal_mask_static_cache(self):
|
|
# Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
|
|
# we pass a 4D attention mask shaped [..., seq_len, full_static_cache_len])
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self.get_test_data()
|
|
|
|
# regular batch
|
|
logits = self.model.forward(input_ids, position_ids=position_ids).logits
|
|
logits_last = logits[:, -1, :] # last tokens in each batch line
|
|
decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]
|
|
|
|
# upgrade the model with StaticCache
|
|
max_cache_len = 16 # note that max_cache_len is greater than the attention_mask.shape[-1]
|
|
past_key_values = StaticCache(
|
|
config=self.model.config,
|
|
max_batch_size=1,
|
|
max_cache_len=max_cache_len,
|
|
device=torch_device,
|
|
dtype=self.model.dtype,
|
|
)
|
|
|
|
# forward run for the first part of input
|
|
part_a = 3 # split point
|
|
|
|
input_1a = input_ids_shared_prefix[:, :part_a]
|
|
position_ids_1a = position_ids_shared_prefix[:, :part_a]
|
|
mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]
|
|
|
|
padded_mask_1a = torch.nn.functional.pad(
|
|
input=mask_1a,
|
|
pad=(0, max_cache_len - mask_1a.shape[-1]),
|
|
mode="constant",
|
|
value=torch.finfo(self.model_dtype).min,
|
|
)
|
|
|
|
_ = self.model.forward(
|
|
input_1a,
|
|
attention_mask=padded_mask_1a,
|
|
position_ids=position_ids_1a,
|
|
cache_position=torch.arange(part_a, device=torch_device),
|
|
past_key_values=past_key_values,
|
|
)
|
|
|
|
# forward run for the second part of input
|
|
input_1b = input_ids_shared_prefix[:, part_a:]
|
|
position_ids_1b = position_ids_shared_prefix[:, part_a:]
|
|
mask_1b = mask_shared_prefix[:, :, part_a:, :]
|
|
|
|
padded_mask_1b = torch.nn.functional.pad(
|
|
input=mask_1b, pad=(0, max_cache_len - mask_1b.shape[-1]), mode="constant", value=0
|
|
)
|
|
|
|
outs_1b = self.model.forward(
|
|
input_1b,
|
|
attention_mask=padded_mask_1b,
|
|
position_ids=position_ids_1b,
|
|
cache_position=torch.arange(
|
|
part_a,
|
|
input_ids_shared_prefix.shape[-1],
|
|
device=torch_device,
|
|
),
|
|
past_key_values=past_key_values,
|
|
)
|
|
decoded_1b = [
|
|
self.tokenizer.decode(t)
|
|
for t in outs_1b.logits.argmax(-1)[
|
|
0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
|
|
]
|
|
]
|
|
self.assertEqual(decoded, decoded_1b)
|