mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
982 lines
38 KiB
Python
982 lines
38 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import random
|
|
import string
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from abc import abstractmethod
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from unittest import skipIf
|
|
|
|
import numpy as np
|
|
|
|
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
|
|
from requests.exceptions import HTTPError
|
|
from transformers import (
|
|
FEATURE_EXTRACTOR_MAPPING,
|
|
TOKENIZER_MAPPING,
|
|
AutoFeatureExtractor,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
DistilBertForSequenceClassification,
|
|
TextClassificationPipeline,
|
|
TFAutoModelForSequenceClassification,
|
|
pipeline,
|
|
)
|
|
from transformers.pipelines import PIPELINE_REGISTRY, get_task
|
|
from transformers.pipelines.base import Pipeline, _pad
|
|
from transformers.testing_utils import (
|
|
TOKEN,
|
|
USER,
|
|
CaptureLogger,
|
|
RequestCounter,
|
|
is_pipeline_test,
|
|
is_staging_test,
|
|
nested_simplify,
|
|
require_scatter,
|
|
require_tensorflow_probability,
|
|
require_tf,
|
|
require_torch,
|
|
slow,
|
|
)
|
|
from transformers.utils import is_tf_available, is_torch_available
|
|
from transformers.utils import logging as transformers_logging
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))
|
|
|
|
from test_module.custom_pipeline import PairClassificationPipeline # noqa E402
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
ROBERTA_EMBEDDING_ADJUSMENT_CONFIGS = [
|
|
"CamembertConfig",
|
|
"IBertConfig",
|
|
"LongformerConfig",
|
|
"MarkupLMConfig",
|
|
"RobertaConfig",
|
|
"XLMRobertaConfig",
|
|
]
|
|
|
|
|
|
def get_checkpoint_from_architecture(architecture):
|
|
try:
|
|
module = importlib.import_module(architecture.__module__)
|
|
except ImportError:
|
|
logger.error(f"Ignoring architecture {architecture}")
|
|
return
|
|
|
|
if hasattr(module, "_CHECKPOINT_FOR_DOC"):
|
|
return module._CHECKPOINT_FOR_DOC
|
|
else:
|
|
logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
|
|
|
|
|
|
def get_tiny_config_from_class(configuration_class):
|
|
if "OpenAIGPT" in configuration_class.__name__:
|
|
# This is the only file that is inconsistent with the naming scheme.
|
|
# Will rename this file if we decide this is the way to go
|
|
return
|
|
|
|
model_type = configuration_class.model_type
|
|
camel_case_model_name = configuration_class.__name__.split("Config")[0]
|
|
|
|
try:
|
|
model_slug = model_type.replace("-", "_")
|
|
module = importlib.import_module(f".test_modeling_{model_slug}", package=f"tests.models.{model_slug}")
|
|
model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
|
|
except (ImportError, AttributeError):
|
|
logger.error(f"No model tester class for {configuration_class.__name__}")
|
|
return
|
|
|
|
if model_tester_class is None:
|
|
logger.warning(f"No model tester class for {configuration_class.__name__}")
|
|
return
|
|
|
|
model_tester = model_tester_class(parent=None)
|
|
|
|
if hasattr(model_tester, "get_pipeline_config"):
|
|
config = model_tester.get_pipeline_config()
|
|
elif hasattr(model_tester, "get_config"):
|
|
config = model_tester.get_config()
|
|
else:
|
|
config = None
|
|
logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")
|
|
|
|
return config
|
|
|
|
|
|
@lru_cache(maxsize=100)
|
|
def get_tiny_tokenizer_from_checkpoint(checkpoint):
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
|
if tokenizer.vocab_size < 300:
|
|
# Wav2Vec2ForCTC for instance
|
|
# ByT5Tokenizer
|
|
# all are already small enough and have no Fast version that can
|
|
# be retrained
|
|
return tokenizer
|
|
logger.info("Training new from iterator ...")
|
|
vocabulary = string.ascii_letters + string.digits + " "
|
|
tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
|
|
logger.info("Trained.")
|
|
return tokenizer
|
|
|
|
|
|
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config, feature_extractor_class):
|
|
try:
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
|
|
except Exception:
|
|
try:
|
|
if feature_extractor_class is not None:
|
|
feature_extractor = feature_extractor_class()
|
|
else:
|
|
feature_extractor = None
|
|
except Exception:
|
|
feature_extractor = None
|
|
if hasattr(tiny_config, "image_size") and feature_extractor:
|
|
feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
|
|
|
|
# Speech2TextModel specific.
|
|
if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor:
|
|
feature_extractor = feature_extractor.__class__(
|
|
feature_size=tiny_config.input_feat_per_channel, num_mel_bins=tiny_config.input_feat_per_channel
|
|
)
|
|
return feature_extractor
|
|
|
|
|
|
class ANY:
|
|
def __init__(self, *_types):
|
|
self._types = _types
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, self._types)
|
|
|
|
def __repr__(self):
|
|
return f"ANY({', '.join(_type.__name__ for _type in self._types)})"
|
|
|
|
|
|
class PipelineTestCaseMeta(type):
|
|
def __new__(mcs, name, bases, dct):
|
|
def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
|
|
@skipIf(tiny_config is None, "TinyConfig does not exist")
|
|
@skipIf(checkpoint is None, "checkpoint does not exist")
|
|
def test(self):
|
|
if ModelClass.__name__.endswith("ForCausalLM"):
|
|
tiny_config.is_encoder_decoder = False
|
|
if hasattr(tiny_config, "encoder_no_repeat_ngram_size"):
|
|
# specific for blenderbot which supports both decoder-only
|
|
# encoder/decoder but the test config only reflects
|
|
# encoder/decoder arch
|
|
tiny_config.encoder_no_repeat_ngram_size = 0
|
|
if ModelClass.__name__.endswith("WithLMHead"):
|
|
tiny_config.is_decoder = True
|
|
try:
|
|
model = ModelClass(tiny_config)
|
|
except ImportError as e:
|
|
self.skipTest(
|
|
f"Cannot run with {tiny_config} as the model requires a library that isn't installed: {e}"
|
|
)
|
|
if hasattr(model, "eval"):
|
|
model = model.eval()
|
|
if tokenizer_class is not None:
|
|
try:
|
|
tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
|
|
# XLNet actually defines it as -1.
|
|
if model.config.__class__.__name__ in ROBERTA_EMBEDDING_ADJUSMENT_CONFIGS:
|
|
tokenizer.model_max_length = model.config.max_position_embeddings - 2
|
|
elif (
|
|
hasattr(model.config, "max_position_embeddings")
|
|
and model.config.max_position_embeddings > 0
|
|
):
|
|
tokenizer.model_max_length = model.config.max_position_embeddings
|
|
# Rust Panic exception are NOT Exception subclass
|
|
# Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
|
|
# provide some default tokenizer and hope for the best.
|
|
except: # noqa: E722
|
|
self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
|
|
else:
|
|
tokenizer = None
|
|
feature_extractor = get_tiny_feature_extractor_from_checkpoint(
|
|
checkpoint, tiny_config, feature_extractor_class
|
|
)
|
|
|
|
if tokenizer is None and feature_extractor is None:
|
|
self.skipTest(
|
|
f"Ignoring {ModelClass}, cannot create a tokenizer or feature_extractor (PerceiverConfig with"
|
|
" no FastTokenizer ?)"
|
|
)
|
|
pipeline, examples = self.get_test_pipeline(model, tokenizer, feature_extractor)
|
|
if pipeline is None:
|
|
# The test can disable itself, but it should be very marginal
|
|
# Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
|
|
return
|
|
self.run_pipeline_test(pipeline, examples)
|
|
|
|
def run_batch_test(pipeline, examples):
|
|
# Need to copy because `Conversation` are stateful
|
|
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
|
|
return # No batching for this and it's OK
|
|
|
|
# 10 examples with batch size 4 means there needs to be a unfinished batch
|
|
# which is important for the unbatcher
|
|
def data(n):
|
|
for _ in range(n):
|
|
# Need to copy because Conversation object is mutated
|
|
yield copy.deepcopy(random.choice(examples))
|
|
|
|
out = []
|
|
for item in pipeline(data(10), batch_size=4):
|
|
out.append(item)
|
|
self.assertEqual(len(out), 10)
|
|
|
|
run_batch_test(pipeline, examples)
|
|
|
|
return test
|
|
|
|
for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
|
|
mapping = dct.get(key, {})
|
|
if mapping:
|
|
for configuration, model_architectures in mapping.items():
|
|
if not isinstance(model_architectures, tuple):
|
|
model_architectures = (model_architectures,)
|
|
|
|
for model_architecture in model_architectures:
|
|
checkpoint = get_checkpoint_from_architecture(model_architecture)
|
|
tiny_config = get_tiny_config_from_class(configuration)
|
|
tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
|
|
feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
|
|
feature_extractor_name = (
|
|
feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor"
|
|
)
|
|
if not tokenizer_classes:
|
|
# We need to test even if there are no tokenizers.
|
|
tokenizer_classes = [None]
|
|
else:
|
|
# Remove the non defined tokenizers
|
|
# ByT5 and Perceiver are bytes-level and don't define
|
|
# FastTokenizer, we can just ignore those.
|
|
tokenizer_classes = [
|
|
tokenizer_class for tokenizer_class in tokenizer_classes if tokenizer_class is not None
|
|
]
|
|
|
|
for tokenizer_class in tokenizer_classes:
|
|
if tokenizer_class is not None:
|
|
tokenizer_name = tokenizer_class.__name__
|
|
else:
|
|
tokenizer_name = "notokenizer"
|
|
|
|
test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"
|
|
|
|
if tokenizer_class is not None or feature_extractor_class is not None:
|
|
dct[test_name] = gen_test(
|
|
model_architecture,
|
|
checkpoint,
|
|
tiny_config,
|
|
tokenizer_class,
|
|
feature_extractor_class,
|
|
)
|
|
|
|
@abstractmethod
|
|
def inner(self):
|
|
raise NotImplementedError("Not implemented test")
|
|
|
|
# Force these 2 methods to exist
|
|
dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
|
|
dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)
|
|
|
|
return type.__new__(mcs, name, bases, dct)
|
|
|
|
|
|
@is_pipeline_test
|
|
class CommonPipelineTest(unittest.TestCase):
|
|
@require_torch
|
|
def test_pipeline_iteration(self):
|
|
from torch.utils.data import Dataset
|
|
|
|
class MyDataset(Dataset):
|
|
data = [
|
|
"This is a test",
|
|
"This restaurant is great",
|
|
"This restaurant is awful",
|
|
]
|
|
|
|
def __len__(self):
|
|
return 3
|
|
|
|
def __getitem__(self, i):
|
|
return self.data[i]
|
|
|
|
text_classifier = pipeline(
|
|
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
|
|
)
|
|
dataset = MyDataset()
|
|
for output in text_classifier(dataset):
|
|
self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
|
|
|
|
@require_torch
|
|
def test_check_task_auto_inference(self):
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
|
|
|
|
self.assertIsInstance(pipe, TextClassificationPipeline)
|
|
|
|
@require_torch
|
|
def test_pipeline_batch_size_global(self):
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
|
|
self.assertEqual(pipe._batch_size, None)
|
|
self.assertEqual(pipe._num_workers, None)
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
|
|
self.assertEqual(pipe._batch_size, 2)
|
|
self.assertEqual(pipe._num_workers, 1)
|
|
|
|
@require_torch
|
|
def test_pipeline_override(self):
|
|
class MyPipeline(TextClassificationPipeline):
|
|
pass
|
|
|
|
text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
|
|
|
|
self.assertIsInstance(text_classifier, MyPipeline)
|
|
|
|
def test_check_task(self):
|
|
task = get_task("gpt2")
|
|
self.assertEqual(task, "text-generation")
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
# Wrong framework
|
|
get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")
|
|
|
|
@require_torch
|
|
def test_iterator_data(self):
|
|
def data(n: int):
|
|
for _ in range(n):
|
|
yield "This is a test"
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
|
|
|
|
results = []
|
|
for out in pipe(data(10)):
|
|
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
|
results.append(out)
|
|
self.assertEqual(len(results), 10)
|
|
|
|
# When using multiple workers on streamable data it should still work
|
|
# This will force using `num_workers=1` with a warning for now.
|
|
results = []
|
|
for out in pipe(data(10), num_workers=2):
|
|
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
|
results.append(out)
|
|
self.assertEqual(len(results), 10)
|
|
|
|
@require_tf
|
|
def test_iterator_data_tf(self):
|
|
def data(n: int):
|
|
for _ in range(n):
|
|
yield "This is a test"
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
|
|
out = pipe("This is a test")
|
|
results = []
|
|
for out in pipe(data(10)):
|
|
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
|
results.append(out)
|
|
self.assertEqual(len(results), 10)
|
|
|
|
@require_torch
|
|
def test_unbatch_attentions_hidden_states(self):
|
|
model = DistilBertForSequenceClassification.from_pretrained(
|
|
"hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
|
|
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
# Used to throw an error because `hidden_states` are a tuple of tensors
|
|
# instead of the expected tensor.
|
|
outputs = text_classifier(["This is great !"] * 20, batch_size=32)
|
|
self.assertEqual(len(outputs), 20)
|
|
|
|
|
|
@is_pipeline_test
|
|
class PipelinePadTest(unittest.TestCase):
|
|
@require_torch
|
|
def test_pipeline_padding(self):
|
|
import torch
|
|
|
|
items = [
|
|
{
|
|
"label": "label1",
|
|
"input_ids": torch.LongTensor([[1, 23, 24, 2]]),
|
|
"attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
|
|
},
|
|
{
|
|
"label": "label2",
|
|
"input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
|
|
"attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
|
|
},
|
|
]
|
|
|
|
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
_pad(items, "input_ids", 10, "right"),
|
|
torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
_pad(items, "input_ids", 10, "left"),
|
|
torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
_pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
|
|
)
|
|
)
|
|
|
|
@require_torch
|
|
def test_pipeline_image_padding(self):
|
|
import torch
|
|
|
|
items = [
|
|
{
|
|
"label": "label1",
|
|
"pixel_values": torch.zeros((1, 3, 10, 10)),
|
|
},
|
|
{
|
|
"label": "label2",
|
|
"pixel_values": torch.zeros((1, 3, 10, 10)),
|
|
},
|
|
]
|
|
|
|
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
_pad(items, "pixel_values", 10, "right"),
|
|
torch.zeros((2, 3, 10, 10)),
|
|
)
|
|
)
|
|
|
|
@require_torch
|
|
def test_pipeline_offset_mapping(self):
|
|
import torch
|
|
|
|
items = [
|
|
{
|
|
"offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
|
|
},
|
|
{
|
|
"offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
|
|
},
|
|
]
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
_pad(items, "offset_mappings", 0, "right"),
|
|
torch.zeros((2, 11, 2), dtype=torch.long),
|
|
),
|
|
)
|
|
|
|
|
|
@is_pipeline_test
|
|
class PipelineUtilsTest(unittest.TestCase):
|
|
@require_torch
|
|
def test_pipeline_dataset(self):
|
|
from transformers.pipelines.pt_utils import PipelineDataset
|
|
|
|
dummy_dataset = [0, 1, 2, 3]
|
|
|
|
def add(number, extra=0):
|
|
return number + extra
|
|
|
|
dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
|
|
self.assertEqual(len(dataset), 4)
|
|
outputs = [dataset[i] for i in range(4)]
|
|
self.assertEqual(outputs, [2, 3, 4, 5])
|
|
|
|
@require_torch
|
|
def test_pipeline_iterator(self):
|
|
from transformers.pipelines.pt_utils import PipelineIterator
|
|
|
|
dummy_dataset = [0, 1, 2, 3]
|
|
|
|
def add(number, extra=0):
|
|
return number + extra
|
|
|
|
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
|
|
self.assertEqual(len(dataset), 4)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(outputs, [2, 3, 4, 5])
|
|
|
|
@require_torch
|
|
def test_pipeline_iterator_no_len(self):
|
|
from transformers.pipelines.pt_utils import PipelineIterator
|
|
|
|
def dummy_dataset():
|
|
for i in range(4):
|
|
yield i
|
|
|
|
def add(number, extra=0):
|
|
return number + extra
|
|
|
|
dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
|
|
with self.assertRaises(TypeError):
|
|
len(dataset)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(outputs, [2, 3, 4, 5])
|
|
|
|
@require_torch
|
|
def test_pipeline_batch_unbatch_iterator(self):
|
|
from transformers.pipelines.pt_utils import PipelineIterator
|
|
|
|
dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]
|
|
|
|
def add(number, extra=0):
|
|
return {"id": [i + extra for i in number["id"]]}
|
|
|
|
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])
|
|
|
|
@require_torch
|
|
def test_pipeline_batch_unbatch_iterator_tensors(self):
|
|
import torch
|
|
|
|
from transformers.pipelines.pt_utils import PipelineIterator
|
|
|
|
dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]
|
|
|
|
def add(number, extra=0):
|
|
return {"id": number["id"] + extra}
|
|
|
|
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(
|
|
nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
|
|
)
|
|
|
|
@require_torch
|
|
def test_pipeline_chunk_iterator(self):
|
|
from transformers.pipelines.pt_utils import PipelineChunkIterator
|
|
|
|
def preprocess_chunk(n: int):
|
|
for i in range(n):
|
|
yield i
|
|
|
|
dataset = [2, 3]
|
|
|
|
dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)
|
|
|
|
outputs = [item for item in dataset]
|
|
|
|
self.assertEqual(outputs, [0, 1, 0, 1, 2])
|
|
|
|
@require_torch
|
|
def test_pipeline_pack_iterator(self):
|
|
from transformers.pipelines.pt_utils import PipelinePackIterator
|
|
|
|
def pack(item):
|
|
return {"id": item["id"] + 1, "is_last": item["is_last"]}
|
|
|
|
dataset = [
|
|
{"id": 0, "is_last": False},
|
|
{"id": 1, "is_last": True},
|
|
{"id": 0, "is_last": False},
|
|
{"id": 1, "is_last": False},
|
|
{"id": 2, "is_last": True},
|
|
]
|
|
|
|
dataset = PipelinePackIterator(dataset, pack, {})
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{"id": 1},
|
|
{"id": 2},
|
|
],
|
|
[
|
|
{"id": 1},
|
|
{"id": 2},
|
|
{"id": 3},
|
|
],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_pipeline_pack_unbatch_iterator(self):
|
|
from transformers.pipelines.pt_utils import PipelinePackIterator
|
|
|
|
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]
|
|
|
|
def add(number, extra=0):
|
|
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
|
|
|
|
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
|
|
|
|
# is_false Across batch
|
|
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]
|
|
|
|
def add(number, extra=0):
|
|
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
|
|
|
|
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
|
|
|
|
outputs = [item for item in dataset]
|
|
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_load_default_pipelines_pt(self):
|
|
import torch
|
|
|
|
from transformers.pipelines import SUPPORTED_TASKS
|
|
|
|
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
|
|
for task in SUPPORTED_TASKS.keys():
|
|
if task == "table-question-answering":
|
|
# test table in seperate test due to more dependencies
|
|
continue
|
|
|
|
self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)
|
|
|
|
@slow
|
|
@require_tf
|
|
def test_load_default_pipelines_tf(self):
|
|
import tensorflow as tf
|
|
|
|
from transformers.pipelines import SUPPORTED_TASKS
|
|
|
|
set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731
|
|
for task in SUPPORTED_TASKS.keys():
|
|
if task == "table-question-answering":
|
|
# test table in seperate test due to more dependencies
|
|
continue
|
|
|
|
self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_scatter
|
|
def test_load_default_pipelines_pt_table_qa(self):
|
|
import torch
|
|
|
|
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
|
|
self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt)
|
|
|
|
@slow
|
|
@require_tf
|
|
@require_tensorflow_probability
|
|
def test_load_default_pipelines_tf_table_qa(self):
|
|
import tensorflow as tf
|
|
|
|
set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731
|
|
self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf)
|
|
|
|
def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn):
|
|
from transformers.pipelines import SUPPORTED_TASKS, pipeline
|
|
|
|
task_dict = SUPPORTED_TASKS[task]
|
|
# test to compare pipeline to manually loading the respective model
|
|
model = None
|
|
relevant_auto_classes = task_dict[framework]
|
|
|
|
if len(relevant_auto_classes) == 0:
|
|
# task has no default
|
|
logger.debug(f"{task} in {framework} has no default")
|
|
return
|
|
|
|
# by default use first class
|
|
auto_model_cls = relevant_auto_classes[0]
|
|
|
|
# retrieve correct model ids
|
|
if task == "translation":
|
|
# special case for translation pipeline which has multiple languages
|
|
model_ids = []
|
|
revisions = []
|
|
tasks = []
|
|
for translation_pair in task_dict["default"].keys():
|
|
model_id, revision = task_dict["default"][translation_pair]["model"][framework]
|
|
|
|
model_ids.append(model_id)
|
|
revisions.append(revision)
|
|
tasks.append(task + f"_{'_to_'.join(translation_pair)}")
|
|
else:
|
|
# normal case - non-translation pipeline
|
|
model_id, revision = task_dict["default"]["model"][framework]
|
|
|
|
model_ids = [model_id]
|
|
revisions = [revision]
|
|
tasks = [task]
|
|
|
|
# check for equality
|
|
for model_id, revision, task in zip(model_ids, revisions, tasks):
|
|
# load default model
|
|
try:
|
|
set_seed_fn()
|
|
model = auto_model_cls.from_pretrained(model_id, revision=revision)
|
|
except ValueError:
|
|
# first auto class is possible not compatible with model, go to next model class
|
|
auto_model_cls = relevant_auto_classes[1]
|
|
set_seed_fn()
|
|
model = auto_model_cls.from_pretrained(model_id, revision=revision)
|
|
|
|
# load default pipeline
|
|
set_seed_fn()
|
|
default_pipeline = pipeline(task, framework=framework)
|
|
|
|
# compare pipeline model with default model
|
|
models_are_equal = check_models_equal_fn(default_pipeline.model, model)
|
|
self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.")
|
|
|
|
logger.debug(f"{task} in {framework} succeeded with {model_id}.")
|
|
|
|
def check_models_equal_pt(self, model1, model2):
|
|
models_are_equal = True
|
|
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
|
|
if model1_p.data.ne(model2_p.data).sum() > 0:
|
|
models_are_equal = False
|
|
|
|
return models_are_equal
|
|
|
|
def check_models_equal_tf(self, model1, model2):
|
|
models_are_equal = True
|
|
for model1_p, model2_p in zip(model1.weights, model2.weights):
|
|
if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5:
|
|
models_are_equal = False
|
|
|
|
return models_are_equal
|
|
|
|
|
|
class CustomPipeline(Pipeline):
|
|
def _sanitize_parameters(self, **kwargs):
|
|
preprocess_kwargs = {}
|
|
if "maybe_arg" in kwargs:
|
|
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
|
return preprocess_kwargs, {}, {}
|
|
|
|
def preprocess(self, text, maybe_arg=2):
|
|
input_ids = self.tokenizer(text, return_tensors="pt")
|
|
return input_ids
|
|
|
|
def _forward(self, model_inputs):
|
|
outputs = self.model(**model_inputs)
|
|
return outputs
|
|
|
|
def postprocess(self, model_outputs):
|
|
return model_outputs["logits"].softmax(-1).numpy()
|
|
|
|
|
|
@is_pipeline_test
|
|
class CustomPipelineTest(unittest.TestCase):
|
|
def test_warning_logs(self):
|
|
transformers_logging.set_verbosity_debug()
|
|
logger_ = transformers_logging.get_logger("transformers.pipelines.base")
|
|
|
|
alias = "text-classification"
|
|
# Get the original task, so we can restore it at the end.
|
|
# (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail)
|
|
_, original_task, _ = PIPELINE_REGISTRY.check_task(alias)
|
|
|
|
try:
|
|
with CaptureLogger(logger_) as cm:
|
|
PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline)
|
|
self.assertIn(f"{alias} is already registered", cm.out)
|
|
finally:
|
|
# restore
|
|
PIPELINE_REGISTRY.supported_tasks[alias] = original_task
|
|
|
|
def test_register_pipeline(self):
|
|
PIPELINE_REGISTRY.register_pipeline(
|
|
"custom-text-classification",
|
|
pipeline_class=PairClassificationPipeline,
|
|
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
|
|
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
|
|
default={"pt": "hf-internal-testing/tiny-random-distilbert"},
|
|
type="text",
|
|
)
|
|
assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()
|
|
|
|
_, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
|
|
self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ())
|
|
self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ())
|
|
self.assertEqual(task_def["type"], "text")
|
|
self.assertEqual(task_def["impl"], PairClassificationPipeline)
|
|
self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}})
|
|
|
|
# Clean registry for next tests.
|
|
del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"]
|
|
|
|
def test_dynamic_pipeline(self):
|
|
PIPELINE_REGISTRY.register_pipeline(
|
|
"pair-classification",
|
|
pipeline_class=PairClassificationPipeline,
|
|
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
|
|
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
|
|
)
|
|
|
|
classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert")
|
|
|
|
# Clean registry as we won't need the pipeline to be in it for the rest to work.
|
|
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
classifier.save_pretrained(tmp_dir)
|
|
# checks
|
|
self.assertDictEqual(
|
|
classifier.model.config.custom_pipelines,
|
|
{
|
|
"pair-classification": {
|
|
"impl": "custom_pipeline.PairClassificationPipeline",
|
|
"pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (),
|
|
"tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (),
|
|
}
|
|
},
|
|
)
|
|
# Fails if the user forget to pass along `trust_remote_code=True`
|
|
with self.assertRaises(ValueError):
|
|
_ = pipeline(model=tmp_dir)
|
|
|
|
new_classifier = pipeline(model=tmp_dir, trust_remote_code=True)
|
|
# Using trust_remote_code=False forces the traditional pipeline tag
|
|
old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False)
|
|
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
|
|
# dynamic module
|
|
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
|
|
self.assertEqual(new_classifier.task, "pair-classification")
|
|
results = new_classifier("I hate you", second_text="I love you")
|
|
self.assertDictEqual(
|
|
nested_simplify(results),
|
|
{"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]},
|
|
)
|
|
|
|
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
|
|
self.assertEqual(old_classifier.task, "text-classification")
|
|
results = old_classifier("I hate you", text_pair="I love you")
|
|
self.assertListEqual(
|
|
nested_simplify(results),
|
|
[{"label": "LABEL_0", "score": 0.505}],
|
|
)
|
|
|
|
def test_cached_pipeline_has_minimum_calls_to_head(self):
|
|
# Make sure we have cached the pipeline.
|
|
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
|
|
with RequestCounter() as counter:
|
|
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
|
|
self.assertEqual(counter.get_request_count, 0)
|
|
self.assertEqual(counter.head_request_count, 1)
|
|
self.assertEqual(counter.other_request_count, 0)
|
|
|
|
|
|
@require_torch
|
|
@is_staging_test
|
|
class DynamicPipelineTester(unittest.TestCase):
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._token = TOKEN
|
|
set_access_token(TOKEN)
|
|
HfFolder.save_token(TOKEN)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="test-dynamic-pipeline")
|
|
except HTTPError:
|
|
pass
|
|
|
|
def test_push_to_hub_dynamic_pipeline(self):
|
|
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
|
|
|
|
PIPELINE_REGISTRY.register_pipeline(
|
|
"pair-classification",
|
|
pipeline_class=PairClassificationPipeline,
|
|
pt_model=AutoModelForSequenceClassification,
|
|
)
|
|
|
|
config = BertConfig(
|
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
|
|
)
|
|
model = BertForSequenceClassification(config).eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-pipeline", use_auth_token=self._token)
|
|
|
|
vocab_file = os.path.join(tmp_dir, "vocab.txt")
|
|
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
|
|
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
|
|
tokenizer = BertTokenizer(vocab_file)
|
|
|
|
classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer)
|
|
|
|
# Clean registry as we won't need the pipeline to be in it for the rest to work.
|
|
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
|
|
|
|
classifier.save_pretrained(tmp_dir)
|
|
# checks
|
|
self.assertDictEqual(
|
|
classifier.model.config.custom_pipelines,
|
|
{
|
|
"pair-classification": {
|
|
"impl": "custom_pipeline.PairClassificationPipeline",
|
|
"pt": ("AutoModelForSequenceClassification",),
|
|
"tf": (),
|
|
}
|
|
},
|
|
)
|
|
|
|
repo.push_to_hub()
|
|
|
|
# Fails if the user forget to pass along `trust_remote_code=True`
|
|
with self.assertRaises(ValueError):
|
|
_ = pipeline(model=f"{USER}/test-dynamic-pipeline")
|
|
|
|
new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True)
|
|
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
|
|
# dynamic module
|
|
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
|
|
|
|
results = classifier("I hate you", second_text="I love you")
|
|
new_results = new_classifier("I hate you", second_text="I love you")
|
|
self.assertDictEqual(nested_simplify(results), nested_simplify(new_results))
|
|
|
|
# Using trust_remote_code=False forces the traditional pipeline tag
|
|
old_classifier = pipeline(
|
|
"text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False
|
|
)
|
|
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
|
|
self.assertEqual(old_classifier.task, "text-classification")
|
|
new_results = old_classifier("I hate you", text_pair="I love you")
|
|
self.assertListEqual(
|
|
nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results)
|
|
)
|