mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

docs: ko: serialization.mdx Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com> Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
452 lines
21 KiB
Plaintext
452 lines
21 KiB
Plaintext
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
-->
|
|
|
|
# ONNX로 내보내기[[export-to-onnx]]
|
|
|
|
프로덕션 환경에 🤗 Transformers 모델을 배포할 때에는 특수 런타임 및 하드웨어 위에 올리고 실행할 수 있도록 직렬화된 형식으로 내보내기를 권장합니다. 이 가이드에서는 🤗 Transformers 모델을 [ONNX (Open Neural Network eXchange)](http://onnx.ai)로 내보내는 방법을 안내합니다.
|
|
|
|
ONNX는 딥러닝 모델을 표현하기 위한 공통 파일 형식과 연산자들을 정의하는 개방형 표준으로써 PyTorch, TensorFlow 등 다양한 프레임워크에서 지원됩니다. 모델을 ONNX 형식으로 내보내면, (보통 _중간 표현 (Intermediate Representation; IR)_이라고 불리는) 계산 그래프가 구성됩니다. 계산 그래프는 신경망을 통해 데이터가 흐르는 방식, 즉 어떤 연산이 어느 부분에 사용되었는지를 나타냅니다.
|
|
|
|
표준 연산 및 데이터 형식을 사용하여 그래프를 노출하기 때문에 ONNX를 사용하면 프레임워크 간 전환이 쉬워집니다. 예를 들어, PyTorch에서 훈련된 모델은 ONNX 형식으로 내보낸 뒤, TensorFlow에서 가져올 수 있습니다. 물론 그 반대도 가능합니다.
|
|
|
|
🤗 Transformers는 모델 체크포인트를 ONNX 그래프로 변환할 수 있게 해주는 [`transformers.onnx`](main_classes/onnx) 패키지를 제공합니다. 이걸 가능케 하는 구성 객체는 여러 모델 아키텍처를 대상으로 미리 제작되어 있으며, 다른 아키텍처로도 쉽게 확장할 수 있도록 설계되었습니다.
|
|
|
|
<Tip>
|
|
|
|
🤗 Optimum에서 [`optimum.exporters.onnx` 패키지](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)를 사용하여 🤗 Transformers 모델을 내보낼 수도 있습니다.
|
|
|
|
모델을 내보낸 후 다음과 같이 사용될 수 있습니다:
|
|
|
|
- 양자화 및 그래프 최적화와 같은 기술을 통해 추론에 최적화합니다.
|
|
- [`ORTModelForXXX` 클래스](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort)를 통해 ONNX 런타임에서 실행합니다. 이 클래스들은 🤗 Transformers에서 사용하는 `AutoModel` API와 동일합니다.
|
|
- [최적화된 추론 파이프라인](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines) 위에 실행합니다. 이 파이프라인은 🤗 Transformers의 [`pipeline`] 함수와 동일한 API를 갖습니다.
|
|
|
|
이러한 기능을 모두 살펴보려면 [🤗 Optimum 라이브러리](https://github.com/huggingface/optimum)를 확인하세요.
|
|
|
|
</Tip>
|
|
|
|
미리 제작된 구성에는 다음 아키텍처가 포함됩니다:
|
|
|
|
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
|
|
|
|
- ALBERT
|
|
- BART
|
|
- BEiT
|
|
- BERT
|
|
- BigBird
|
|
- BigBird-Pegasus
|
|
- Blenderbot
|
|
- BlenderbotSmall
|
|
- BLOOM
|
|
- CamemBERT
|
|
- Chinese-CLIP
|
|
- CLIP
|
|
- CodeGen
|
|
- Conditional DETR
|
|
- ConvBERT
|
|
- ConvNeXT
|
|
- Data2VecText
|
|
- Data2VecVision
|
|
- DeBERTa
|
|
- DeBERTa-v2
|
|
- DeiT
|
|
- DETR
|
|
- DistilBERT
|
|
- EfficientNet
|
|
- ELECTRA
|
|
- ERNIE
|
|
- FlauBERT
|
|
- GPT Neo
|
|
- GPT-J
|
|
- GPT-Sw3
|
|
- GroupViT
|
|
- I-BERT
|
|
- ImageGPT
|
|
- LayoutLM
|
|
- LayoutLMv3
|
|
- LeViT
|
|
- Longformer
|
|
- LongT5
|
|
- M2M100
|
|
- Marian
|
|
- mBART
|
|
- MEGA
|
|
- MobileBERT
|
|
- MobileNetV1
|
|
- MobileNetV2
|
|
- MobileViT
|
|
- MT5
|
|
- OpenAI GPT-2
|
|
- OWL-ViT
|
|
- Perceiver
|
|
- PLBart
|
|
- PoolFormer
|
|
- RemBERT
|
|
- ResNet
|
|
- RoBERTa
|
|
- RoBERTa-PreLayerNorm
|
|
- RoFormer
|
|
- SegFormer
|
|
- SqueezeBERT
|
|
- Swin Transformer
|
|
- T5
|
|
- Table Transformer
|
|
- Vision Encoder decoder
|
|
- ViT
|
|
- Whisper
|
|
- X-MOD
|
|
- XLM
|
|
- XLM-RoBERTa
|
|
- XLM-RoBERTa-XL
|
|
- YOLOS
|
|
|
|
앞으로의 두 섹션에서는 아래 내용을 살펴보겠습니다:
|
|
|
|
* `transformers.onnx` 패키지를 사용하여 지원되는 모델 내보내기
|
|
* 지원되지 않는 아키텍처를 위해 사용자 정의 모델 내보내기
|
|
|
|
## 모델을 ONNX로 내보내기[[exporting-a-model-to-onnx]]
|
|
|
|
<Tip>
|
|
|
|
이제 모델을 내보낼 때 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)를 사용하도록 권장합니다. `transformers.onnx`와 매우 유사하니 걱정하지 마세요!
|
|
|
|
</Tip>
|
|
|
|
🤗 Transformers 모델을 ONNX로 내보내려면 먼저 몇 가지 추가 종속성을 설치해야합니다:
|
|
|
|
```bash
|
|
pip install transformers[onnx]
|
|
```
|
|
|
|
`transformers.onnx` 패키지는 다음과 같이 Python 모듈로 사용할 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --help
|
|
|
|
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
|
|
|
|
positional arguments:
|
|
output Path indicating where to store generated ONNX model.
|
|
|
|
optional arguments:
|
|
-h, --help show this help message and exit
|
|
-m MODEL, --model MODEL
|
|
Model ID on huggingface.co or path on disk to load model from.
|
|
--feature {causal-lm, ...}
|
|
The type of features to export the model with.
|
|
--opset OPSET ONNX opset version to export the model with.
|
|
--atol ATOL Absolute difference tolerance when validating the model.
|
|
```
|
|
|
|
다음과 같이 미리 제작된 구성을 사용하여 체크포인트를 내보낼 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --model=distilbert-base-uncased onnx/
|
|
```
|
|
|
|
다음과 같은 로그가 표시되어야합니다:
|
|
|
|
```bash
|
|
Validating ONNX model...
|
|
-[✓] ONNX model output names match reference model ({'last_hidden_state'})
|
|
- Validating ONNX Model output "last_hidden_state":
|
|
-[✓] (2, 8, 768) matches (2, 8, 768)
|
|
-[✓] all values close (atol: 1e-05)
|
|
All good, model saved at: onnx/model.onnx
|
|
```
|
|
|
|
이렇게 `--model` 인수로 정의된 체크포인트의 ONNX 그래프를 내보냅니다. 예시에서는 `distilbert-base-uncased`이지만, Hugging Face Hub에서 가져왔거나 로컬에 저장된 체크포인트들 모두 가능합니다.
|
|
|
|
결과로 나온 `model.onnx` 파일은 ONNX 표준을 지원하는 [다양한 가속기](https://onnx.ai/supported-tools.html#deployModel) 중 하나에서 실행할 수 있습니다. 예를 들어, 다음과 같이 [ONNX Runtime](https://onnxruntime.ai/)에서 모델을 가져오고 실행할 수 있습니다:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer
|
|
>>> from onnxruntime import InferenceSession
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
>>> session = InferenceSession("onnx/model.onnx")
|
|
>>> # ONNX Runtime expects NumPy arrays as input
|
|
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
|
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
|
```
|
|
|
|
`["last_hidden_state"]`와 같은 필요한 출력 이름은 각 모델의 ONNX 구성을 살펴보면 얻을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다:
|
|
|
|
```python
|
|
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
|
|
|
>>> config = DistilBertConfig()
|
|
>>> onnx_config = DistilBertOnnxConfig(config)
|
|
>>> print(list(onnx_config.outputs.keys()))
|
|
["last_hidden_state"]
|
|
```
|
|
|
|
Hub의 TensorFlow 체크포인트의 경우에도 과정은 동일합니다. 예를 들어, 다음과 같이 [Keras organization](https://huggingface.co/keras-io)에서 TensorFlow 체크포인트를 내보낼 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
|
```
|
|
|
|
로컬에 저장된 모델을 내보내려면 모델의 가중치 및 토크나이저 파일이 저장된 디렉토리가 필요합니다. 예를 들어, 다음과 같이 체크포인트를 가져오고 저장할 수 있습니다:
|
|
|
|
<frameworkcontent> <pt>
|
|
```python
|
|
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
>>> # Load tokenizer and PyTorch weights form the Hub
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
|
>>> # Save to disk
|
|
>>> tokenizer.save_pretrained("local-pt-checkpoint")
|
|
>>> pt_model.save_pretrained("local-pt-checkpoint")
|
|
```
|
|
|
|
체크포인트를 저장한 후, `transformers.onnx` 패키지의 `--model` 인수를 원하는 디렉토리로 지정하여 ONNX로 내보낼 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
|
```
|
|
</pt> <tf>
|
|
```python
|
|
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
|
|
|
>>> # Load tokenizer and TensorFlow weights from the Hub
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
|
>>> # Save to disk
|
|
>>> tokenizer.save_pretrained("local-tf-checkpoint")
|
|
>>> tf_model.save_pretrained("local-tf-checkpoint")
|
|
```
|
|
|
|
체크포인트를 저장한 후, `transformers.onnx` 패키지의 `--model` 인수를 원하는 디렉토리로 지정하여 ONNX로 내보낼 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --model=local-tf-checkpoint onnx/
|
|
```
|
|
</tf> </frameworkcontent>
|
|
|
|
## 다른 모델 작업에 대한 기능 선택[[selecting-features-for-different-model-tasks]]
|
|
|
|
<Tip>
|
|
|
|
이제 모델을 내보낼 때 `optimum.exporters.onnx`를 사용하도록 권장합니다. 작업을 선택하는 방법을 알아보려면 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)를 확인하세요.
|
|
|
|
</Tip>
|
|
|
|
다른 유형의 태스크에 맞춰서 모델을 내보낼 수 있도록 미리 제작된 구성마다 일련의 _기능_이 포함되어 있습니다. 아래 표에 나와 있는대로 각 기능은 다른 `AutoClass`와 연관되어 있습니다.
|
|
|
|
| Feature | Auto Class |
|
|
| ------------------------------------ | ------------------------------------ |
|
|
| `causal-lm`, `causal-lm-with-past` | `AutoModelForCausalLM` |
|
|
| `default`, `default-with-past` | `AutoModel` |
|
|
| `masked-lm` | `AutoModelForMaskedLM` |
|
|
| `question-answering` | `AutoModelForQuestionAnswering` |
|
|
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM` |
|
|
| `sequence-classification` | `AutoModelForSequenceClassification` |
|
|
| `token-classification` | `AutoModelForTokenClassification` |
|
|
|
|
각 구성에서 [`~transformers.onnx.FeaturesManager`]를 통해 지원되는 기능 목록을 찾을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다:
|
|
|
|
```python
|
|
>>> from transformers.onnx.features import FeaturesManager
|
|
|
|
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
|
|
>>> print(distilbert_features)
|
|
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
|
|
```
|
|
|
|
그런 다음 `transformers.onnx` 패키지의 `--feature` 인수에 이러한 기능 중 하나를 전달할 수 있습니다. 예를 들어, 텍스트 분류 모델을 내보내려면 다음과 같이 Hub에서 미세 조정된 모델을 선택하고 실행할 수 있습니다:
|
|
|
|
```bash
|
|
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
|
|
--feature=sequence-classification onnx/
|
|
```
|
|
|
|
다음과 같은 로그가 표시됩니다:
|
|
|
|
```bash
|
|
Validating ONNX model...
|
|
-[✓] ONNX model output names match reference model ({'logits'})
|
|
- Validating ONNX Model output "logits":
|
|
-[✓] (2, 2) matches (2, 2)
|
|
-[✓] all values close (atol: 1e-05)
|
|
All good, model saved at: onnx/model.onnx
|
|
```
|
|
|
|
이때 미세 조정된 모델의 출력명은 이전의 `distilbert-base-uncased` 체크포인트에서 봤던 `last_hidden_state`와 달리 `logits`입니다. 시퀀스 분류를 위해 미세 조정되었기 때문에 예상대로 입니다.
|
|
|
|
<Tip>
|
|
|
|
`with-past` 접미사를 가진 기능(예: `causal-lm-with-past`)은 미리 계산된 숨겨진 상태(hidden states; 어텐션 블록 속 키-값 쌍)를 사용하여 빠른 자기 회귀 디코딩이 가능한 모델 클래스들입니다.
|
|
|
|
</Tip>
|
|
|
|
<Tip>
|
|
|
|
`VisionEncoderDecoder` 유형 모델의 경우, 인코더 및 디코더 부분은 각각 `encoder_model.onnx` 및 `decoder_model.onnx`라는 두 개의 ONNX 파일로 분리하여 내보냅니다.
|
|
|
|
</Tip>
|
|
|
|
|
|
## 지원되지 않는 아키텍처를 위한 모델 내보내기[[exporting-a-model-for-an-unsupported-architecture]]
|
|
|
|
<Tip>
|
|
|
|
현재 내보낼 수 없는 모델을 지원하도록 기여하려면 먼저 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures)에서 지원되는지 확인하고 지원되지 않는 경우 [🤗 Optimum에 기여](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)하세요.
|
|
|
|
</Tip>
|
|
|
|
라이브러리에서 직접 지원하지 않는 아키텍처의 모델을 내보내려면 세 가지 주요 단계를 거쳐야 합니다:
|
|
|
|
1. 사용자 정의 ONNX 구성을 구현하기
|
|
2. 모델을 ONNX로 내보내기
|
|
3. PyTorch 및 내보낸 모델의 출력 검증하기
|
|
|
|
이 섹션에서는 DistilBERT가 어떻게 구현되었는지 각 단계마다 자세히 살펴보겠습니다.
|
|
|
|
### 사용자 정의 ONNX 구성을 구현하기[[implementing-a-custom-onnx-configuration]]
|
|
|
|
ONNX 구성 객체부터 시작해 봅시다. 내보내려는 모델 아키텍처 유형에 따라 상속해야하는 세 가지 추상 클래스를 제공합니다:
|
|
|
|
* 인코더 기반 모델은 [`~onnx.config.OnnxConfig`]를 상속합니다.
|
|
* 디코더 기반 모델은 [`~onnx.config.OnnxConfigWithPast`]를 상속합니다.
|
|
* 인코더-디코더 모델은 [`~onnx.config.OnnxSeq2SeqConfigWithPast`]를 상속합니다.
|
|
|
|
<Tip>
|
|
|
|
사용자 정의 ONNX 구성을 구현하는 좋은 방법은 비슷한 아키텍처의 `configuration_<model_name>.py` 파일에서 기존 구현을 확인하는 것입니다.
|
|
|
|
</Tip>
|
|
|
|
DistilBERT는 인코더 기반 모델이므로 해당 구성은 `OnnxConfig`를 상속합니다.
|
|
|
|
```python
|
|
>>> from typing import Mapping, OrderedDict
|
|
>>> from transformers.onnx import OnnxConfig
|
|
|
|
|
|
>>> class DistilBertOnnxConfig(OnnxConfig):
|
|
... @property
|
|
... def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
... return OrderedDict(
|
|
... [
|
|
... ("input_ids", {0: "batch", 1: "sequence"}),
|
|
... ("attention_mask", {0: "batch", 1: "sequence"}),
|
|
... ]
|
|
... )
|
|
```
|
|
|
|
각 구성 객체는 `inputs` 속성을 구현하고 매핑을 반환해야 합니다. 매핑의 키는 예상 입력에 해당하고 값은 해당 입력의 축을 나타냅니다. DistilBERT의 경우 `input_ids` 및 `attention_mask` 두 개의 입력이 필요한데요. 두 입력 모두 `(batch_size, sequence_length)`의 동일한 차원이기 때문에 구성에서도 똑같은 축을 사용합니다.
|
|
|
|
<Tip>
|
|
|
|
`DistilBertOnnxConfig`의 `inputs` 속성이 `OrderedDict`라는 것에 유의하세요. 이렇게 하면 입력이 그래프를 따라 흐를 때 `PreTrainedModel.forward()` 메소드 속 알맞은 상대적인 위치에 있도록 보장합니다. 사용자 정의 ONNX 구성을 구현할 때도 `inputs` 및 `outputs` 속성으로 `OrderedDict`를 사용하는 것을 권장합니다.
|
|
|
|
</Tip>
|
|
|
|
ONNX 구성을 구현한 후에는 다음과 같이 기본 모델의 구성을 제공하여 인스턴스화 할 수 있습니다:
|
|
|
|
```python
|
|
>>> from transformers import AutoConfig
|
|
|
|
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
|
|
>>> onnx_config = DistilBertOnnxConfig(config)
|
|
```
|
|
|
|
결과 객체에는 여러 가지 유용한 속성이 있습니다. 예를 들어 ONNX로 내보낼 때 쓰일 ONNX 연산자 집합을 볼 수 있습니다:
|
|
|
|
```python
|
|
>>> print(onnx_config.default_onnx_opset)
|
|
11
|
|
```
|
|
|
|
다음과 같이 모델에 연결된 출력을 볼 수도 있습니다:
|
|
|
|
```python
|
|
>>> print(onnx_config.outputs)
|
|
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
|
|
```
|
|
|
|
출력 속성이 입력과 동일한 구조임을 유의하세요. 각 출력은 이름과 차원이 `OrderedDict`의 키-값으로 저장되어 있습니다. 출력 구조는 구성을 초기화할 때 선택한 기능과 관련이 있습니다. 기본적으로 ONNX 구성은 `AutoModel` 클래스로 가져온 모델을 내보낼 때 쓰이는 `default` 기능으로 초기화됩니다. 다른 태스크를 위해 모델을 내보내려면 ONNX 구성을 초기화할 때 `task` 인수에 다른 기능을 넣으면 됩니다. 예를 들어, 시퀀스 분류 단계를 덧붙인 DistilBERT를 내보내려면, 이렇게 해볼 수 있습니다:
|
|
|
|
```python
|
|
>>> from transformers import AutoConfig
|
|
|
|
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
|
|
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
|
|
>>> print(onnx_config_for_seq_clf.outputs)
|
|
OrderedDict([('logits', {0: 'batch'})])
|
|
```
|
|
|
|
<Tip>
|
|
|
|
[`~onnx.config.OnnxConfig`]나 다른 구성 클래스에 연결된 모든 기본 속성 및 메소드는 필요에 따라 모두 재정의할 수 있습니다. 고급 예제로 [`BartOnnxConfig`]를 확인하세요.
|
|
|
|
</Tip>
|
|
|
|
### 모델 내보내기[[exporting-the-model]]
|
|
|
|
ONNX 구성을 구현했다면, 다음 단계는 모델을 내보내는 것입니다. 이제 `transformers.onnx` 패키지에서 제공하는 `export()` 함수를 살펴보겠습니다. 이 함수는 ONNX 구성, 기본 모델, 토크나이저, 그리고 내보낼 파일의 경로를 입력으로 받습니다:
|
|
|
|
```python
|
|
>>> from pathlib import Path
|
|
>>> from transformers.onnx import export
|
|
>>> from transformers import AutoTokenizer, AutoModel
|
|
|
|
>>> onnx_path = Path("model.onnx")
|
|
>>> model_ckpt = "distilbert-base-uncased"
|
|
>>> base_model = AutoModel.from_pretrained(model_ckpt)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
|
|
|
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
|
|
```
|
|
|
|
`export()` 함수가 반환하는 `onnx_inputs`와 `onnx_outputs`는 구성의 `inputs`와 `outputs` 속성에서 정의된 키 목록입니다. 모델을 내보낸 후 다음과 같이 모델이 잘 구성되어 있는지 테스트할 수 있습니다:
|
|
|
|
```python
|
|
>>> import onnx
|
|
|
|
>>> onnx_model = onnx.load("model.onnx")
|
|
>>> onnx.checker.check_model(onnx_model)
|
|
```
|
|
|
|
<Tip>
|
|
|
|
모델 크기가 2GB보다 큰 경우 내보내는 중에 여러 추가 파일들이 생성되는 것을 볼 수 있습니다. 사실 ONNX는 모델을 저장하기 위해 [Protocol Buffers](https://developers.google.com/protocol-buffers/)를 사용하는데, 버퍼는 2GB의 크기 제한이 있기 때문에 _자연스러운_ 일입니다. 외부 데이터를 사용하여 모델을 가져오는 방법은 [ONNX 문서](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md)를 참조하세요.
|
|
|
|
</Tip>
|
|
|
|
### 모델의 출력 검증하기[[validating-the-model-outputs]]
|
|
|
|
마지막 단계는 기존 모델과 내보낸 모델의 출력이 일정한 오차 범위 내에서 동일하다는 것을 검증하는 것입니다. 그러려면 `transformers.onnx` 패키지에서 제공하는 `validate_model_outputs()` 함수를 사용할 수 있습니다:
|
|
|
|
```python
|
|
>>> from transformers.onnx import validate_model_outputs
|
|
|
|
>>> validate_model_outputs(
|
|
... onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
|
|
... )
|
|
```
|
|
|
|
이 함수는 [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] 메소드로 기존 및 내보낸 모델의 입력을 생성하며, 검증에 사용될 오차 범위는 구성에서 정의할 수 있습니다. 일반적으로는 1e-6에서 1e-4 범위 내에서 합의하지만, 1e-3보다 작다면 문제 없을 가능성이 높습니다.
|
|
|
|
## 🤗 Transformers에 새 구성 추가하기[[contributing-a-new-configuration-to-transformers]]
|
|
|
|
미리 제작된 구성의 숫자를 늘리려고 노력하고 있으며, 커뮤니티의 기여를 환영합니다! 라이브러리에 당신만의 구성을 추가하려면 다음 단계를 기억해주세요:
|
|
|
|
* `configuration_<model_name>.py` 파일에 ONNX 구성을 구현하세요.
|
|
* [`~onnx.features.FeatureManager`]에 모델 아키텍처 및 해당 기능을 포함하세요.
|
|
* `test_onnx_v2.py`의 테스트에 모델 아키텍처를 추가하세요.
|
|
|
|
아직 감이 안 잡히신다면, [IBERT 구성](https://github.com/huggingface/transformers/pull/14868/files)이 어떻게 기여되었는지 확인해보세요.
|