transformers/tests/models/gemma2/test_modeling_gemma2.py
Guang Yang 7d97cca8dd
Generate using exported model and enable gemma2-2b in ExecuTorch (#33707)
* Generate using exported model and enable gemma2-2b in ExecuTorch

* [run_slow] gemma, gemma2

* truncate expected output message

* Bump required torch version to support gemma2 export

* [run_slow] gemma, gemma2

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
2024-10-11 10:16:31 +02:00

365 lines
16 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma2 model."""
import unittest
from packaging import version
from parameterized import parameterized
from pytest import mark
from transformers import AutoModelForCausalLM, AutoTokenizer, Gemma2Config, HybridCache, is_torch_available, pipeline
from transformers.generation.configuration_utils import GenerationConfig
from transformers.testing_utils import (
require_flash_attn,
require_read_token,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
from ...test_configuration_common import ConfigTester
if is_torch_available():
import torch
from transformers import (
Gemma2ForCausalLM,
Gemma2ForSequenceClassification,
Gemma2ForTokenClassification,
Gemma2Model,
)
class Gemma2ModelTester(GemmaModelTester):
if is_torch_available():
config_class = Gemma2Config
model_class = Gemma2Model
for_causal_lm_class = Gemma2ForCausalLM
for_sequence_class = Gemma2ForSequenceClassification
for_token_class = Gemma2ForTokenClassification
@require_torch
class Gemma2ModelTest(GemmaModelTest, unittest.TestCase):
all_model_classes = (
(Gemma2Model, Gemma2ForCausalLM, Gemma2ForSequenceClassification, Gemma2ForTokenClassification)
if is_torch_available()
else ()
)
all_generative_model_classes = (Gemma2ForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": Gemma2Model,
"text-classification": Gemma2ForSequenceClassification,
"token-classification": Gemma2ForTokenClassification,
"text-generation": Gemma2ForCausalLM,
"zero-shot": Gemma2ForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
_torch_compile_test_ckpt = "google/gemma-2-9b"
def setUp(self):
self.model_tester = Gemma2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Gemma2Config, hidden_size=37)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@unittest.skip("Gemma2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_inference(self):
pass
@unittest.skip("Gemma2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
@parameterized.expand([("random",), ("same",)])
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Gemma2 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@parameterized.expand([(1, False), (1, True), (4, False)])
@unittest.skip("Gemma2 has HybridCache and doesn't support old tuple format at all")
def test_new_cache_format(self, num_beams, do_sample):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
# overwrite because HybridCache has fixed length for key/values
def _check_attentions_for_generate(
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
)
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
for idx, iter_attentions in enumerate(attentions):
tgt_len = min_length + idx if not use_cache else 1
src_len = min_length + idx if not use_cache else max_length
expected_shape = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
)
# overwrite because HybridCache has fixed length for key/values
def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
self.assertIsInstance(past_key_values, HybridCache)
# check shape key, value (batch, head, max_seq_length, head_features)
head_dim = config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
num_key_value_heads = (
config.num_attention_heads
if getattr(config, "num_key_value_heads", None) is None
else config.num_key_value_heads
)
num_hidden_layers = config.num_hidden_layers
# we should get `max_length` in shape, not `max_length - embeds_length`
# `+1` because the test in Mixin subtracts 1 which is needed for tuple cache
static_cache_shape = (batch_size, num_key_value_heads, seq_length + 1, head_dim)
static_layers = [layer_idx for layer_idx, boolean in enumerate(past_key_values.is_sliding) if not boolean]
self.assertTrue(len(past_key_values.key_cache) == num_hidden_layers)
self.assertTrue(past_key_values.key_cache[static_layers[0]].shape == static_cache_shape)
@unittest.skip("Gemma2's eager attn/sdpa attn outputs are expected to be different")
def test_sdpa_equivalence(self):
pass
def test_eager_attention_loaded_by_default(self):
"""Gemma 2 + SDPA = inferior results, because of the logit softcapping. Eager is the default."""
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Usually we enable SDPA by default, but not for Gemma2
model = Gemma2Model(config)
self.assertTrue(model.config._attn_implementation == "eager")
# We can still force SDPA
config._attn_implementation = "sdpa"
model = Gemma2Model(config)
self.assertTrue(model.config._attn_implementation == "sdpa")
@slow
@require_torch_gpu
class Gemma2IntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
# 8 is for A100 / A10 and 7 for T4
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
@require_read_token
def test_model_9b_bf16(self):
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
"<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_read_token
def test_model_9b_fp16(self):
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
"<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_read_token
def test_model_9b_pipeline_bf16(self):
# See https://github.com/huggingface/transformers/pull/31747 -- pipeline was broken for Gemma2 before this PR
model_id = "google/gemma-2-9b"
# EXPECTED_TEXTS should match the same non-pipeline test, minus the special tokens
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = pipe(self.input_text, max_new_tokens=20, do_sample=False, padding=True)
self.assertEqual(output[0][0]["generated_text"], EXPECTED_TEXTS[0])
self.assertEqual(output[1][0]["generated_text"], EXPECTED_TEXTS[1])
@require_read_token
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_model_9b_flash_attn(self):
# See https://github.com/huggingface/transformers/issues/31953 --- flash attn was generating garbage for gemma2, especially in long context
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
'<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many people died in the United States. I have found a few sites that say 500,000 but I am not sure if that is correct. I have also found a site that says 675,000 but I am not sure if that is correct either. I am trying to find out how many people died in the United States. I have found a few',
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America is a country in North America. It is the third largest country in the world by total area and the third most populous country with over 320 million people. The United States is a federal republic consisting of 50 states and a federal district. The 48 contiguous states and the district of Columbia are in central North America between Canada and Mexico. The state of Alaska is in the"
] # fmt: skip
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="flash_attention_2", torch_dtype="float16"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=100, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@slow
@require_read_token
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.5.0"):
self.skipTest(reason="This test requires torch >= 2.5 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b", pad_token="</s>", padding_side="right")
EXPECTED_TEXT_COMPLETION = [
"Hello I am doing a project for my school and I need to know how to make a program that will take a number",
]
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b",
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
},
),
)
prompts = ["Hello I am doing"]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)