transformers/utils/class_mapping_update.py
Sylvain Gugger 7d7ceca396
Model card defaults (#12122)
* [WIP] Model card defaults

* finetuned_from default value

* Add all mappings to the mapping file

* Be more defensive on finetuned_from arg

* Add default task tag

* Separate tags from tasks

* Edge case for dataset

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-06-15 16:01:37 -04:00

107 lines
3.8 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script remaps classes to class strings so that it's quick to load such maps and not require
# loading all possible modeling files
#
# it can be extended to auto-generate other dicts that are needed at runtime
import os
import sys
from os.path import abspath, dirname, join
git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
sys.path.insert(1, git_repo_path)
src = "src/transformers/models/auto/modeling_auto.py"
dst = "src/transformers/utils/modeling_auto_mapping.py"
if os.path.exists(dst) and os.path.getmtime(src) < os.path.getmtime(dst):
# speed things up by only running this script if the src is newer than dst
sys.exit(0)
# only load if needed
from transformers.models.auto.modeling_auto import ( # noqa
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
)
# Those constants don't have a name attribute, so we need to define it manually
mappings = {
"MODEL_FOR_QUESTION_ANSWERING_MAPPING": MODEL_FOR_QUESTION_ANSWERING_MAPPING,
"MODEL_FOR_CAUSAL_LM_MAPPING": MODEL_FOR_CAUSAL_LM_MAPPING,
"MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
"MODEL_FOR_MASKED_LM_MAPPING": MODEL_FOR_MASKED_LM_MAPPING,
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING": MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING": MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
"MODEL_FOR_OBJECT_DETECTION_MAPPING": MODEL_FOR_OBJECT_DETECTION_MAPPING,
"MODEL_FOR_OBJECT_DETECTION_MAPPING": MODEL_FOR_OBJECT_DETECTION_MAPPING,
"MODEL_FOR_QUESTION_ANSWERING_MAPPING": MODEL_FOR_QUESTION_ANSWERING_MAPPING,
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
"MODEL_MAPPING": MODEL_MAPPING,
"MODEL_WITH_LM_HEAD_MAPPING": MODEL_WITH_LM_HEAD_MAPPING,
}
def get_name(value):
if isinstance(value, tuple):
return tuple(get_name(o) for o in value)
return value.__name__
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify: models/auto/modeling_auto.py",
"# 2. run: python utils/class_mapping_update.py",
"from collections import OrderedDict",
"",
]
for name, mapping in mappings.items():
entries = "\n".join([f' ("{k.__name__}", "{get_name(v)}"),' for k, v in mapping.items()])
content += [
"",
f"{name}_NAMES = OrderedDict(",
" [",
entries,
" ]",
")",
"",
]
print(f"Updating {dst}")
with open(dst, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))