transformers/tests/test_retrieval_realm.py
Li-Huai (Allan) Lin 22454ae492
Add REALM (#13292)
* REALM initial commit

* Retriever OK (Update new_gelu).

* Encoder prediction score OK

* Encoder pretrained model OK

* Update retriever comments

* Update docs, tests, and imports

* Prune unused models

* Make embedder as a module `RealmEmbedder`

* Add RealmRetrieverOutput

* Update tokenization

* Pass all tests in test_modeling_realm.py

* Prune RealmModel

* Update docs

* Add training test.

* Remove completed TODO

* Style & Quality

* Prune `RealmModel`

* Fixup

* Changes:
1. Remove RealmTokenizerFast
2. Update docstrings
3. Add a method to RealmTokenizer to handle candidates tokenization.

* Fix up

* Style

* Add tokenization tests

* Update `from_pretrained` tests

* Apply suggestions

* Style & Quality

* Copy BERT model

* Fix comment to avoid docstring copying

* Make RealmBertModel private

* Fix bug

* Style

* Basic QA

* Save

* Complete reader logits

* Add searcher

* Complete searcher & reader

* Move block records init to constructor

* Fix training bug

* Add some outputs to RealmReader

* Add finetuned checkpoint variable names parsing

* Fix bug

* Update REALM config

* Add RealmForOpenQA

* Update convert_tfrecord logits

* Fix bugs

* Complete imports

* Update docs

* Update naming

* Add brute-force searcher

* Pass realm model tests

* Style

* Exclude RealmReader from common tests

* Fix

* Fix

* convert docs

* up

* up

* more make style

* up

* upload

* up

* Fix

* Update src/transformers/__init__.py

* adapt testing

* change modeling code

* fix test

* up

* up

* up

* correct more

* make retriever work

* update

* make style

* finish main structure

* Resolve merge conflict

* Make everything work

* Style

* Fixup

* Fixup

* Update training test

* fix retriever

* remove hardcoded path

* Fix

* Fix modeling test

* Update model links

* Initial retrieval test

* Fix modeling test

* Complete retrieval tests

* Fix

* style

* Fix tests

* Fix docstring example

* Minor fix of retrieval test

* Update license headers and docs

* Apply suggestions from code review

* Style

* Apply suggestions from code review

* Add an example to RealmEmbedder

* Fix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-18 07:24:13 -05:00

186 lines
6.6 KiB
Python

# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class RealmRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.num_block_records = 5
# Realm tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer")
os.makedirs(realm_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records")
os.makedirs(realm_block_records_path, exist_ok=True)
def get_tokenizer(self) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_config(self):
config = RealmConfig(num_block_records=self.num_block_records)
return config
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
}
)
return dataset
def get_dummy_block_records(self):
block_records = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
],
dtype=np.object,
)
return block_records
def get_dummy_retriever(self):
retriever = RealmRetriever(
block_records=self.get_dummy_block_records(),
tokenizer=self.get_tokenizer(),
)
return retriever
def test_retrieve(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, concat_inputs = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual(len(has_answers), 2)
self.assertEqual(len(start_pos), 2)
self.assertEqual(len(end_pos), 2)
self.assertEqual(concat_inputs.input_ids.shape, (2, 10))
self.assertEqual(concat_inputs.attention_mask.shape, (2, 10))
self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10))
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"],
)
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"],
)
def test_block_has_answer(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, _ = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual([False, True], has_answers)
self.assertEqual([[-1], [6]], start_pos)
self.assertEqual([[-1], [7]], end_pos)
def test_save_load_pretrained(self):
retriever = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
# Test local path
retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
self.assertEqual(retriever.block_records[0], b"This is the first record")
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download:
mock_hf_hub_download.return_value = os.path.join(
os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME
)
retriever = RealmRetriever.from_pretrained("qqaatw/realm-cc-news-pretrained-openqa")
self.assertEqual(retriever.block_records[0], b"This is the first record")