mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 11:08:23 +06:00

* Fix * Style * Name * Fix tests * Style * Remove embed sizes checking * Disable some tests * Fix * Apply suggestion
259 lines
12 KiB
Python
259 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import random
|
|
import unittest
|
|
|
|
from transformers import TransfoXLConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import (
|
|
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFTransfoXLForSequenceClassification,
|
|
TFTransfoXLLMHeadModel,
|
|
TFTransfoXLModel,
|
|
)
|
|
|
|
|
|
class TFTransfoXLModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.mem_len = 30
|
|
self.key_length = self.seq_length + self.mem_len
|
|
self.clamp_len = 15
|
|
self.is_training = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.cutoffs = [10, 50, 80]
|
|
self.hidden_size = 32
|
|
self.d_embed = 32
|
|
self.num_attention_heads = 4
|
|
self.d_head = 8
|
|
self.d_inner = 128
|
|
self.div_val = 2
|
|
self.num_hidden_layers = 5
|
|
self.scope = None
|
|
self.seed = 1
|
|
self.eos_token_id = 0
|
|
self.num_labels = 3
|
|
self.pad_token_id = self.vocab_size - 1
|
|
self.init_range = 0.01
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
lm_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
config = TransfoXLConfig(
|
|
vocab_size=self.vocab_size,
|
|
mem_len=self.mem_len,
|
|
clamp_len=self.clamp_len,
|
|
cutoffs=self.cutoffs,
|
|
d_model=self.hidden_size,
|
|
d_embed=self.d_embed,
|
|
n_head=self.num_attention_heads,
|
|
d_head=self.d_head,
|
|
d_inner=self.d_inner,
|
|
div_val=self.div_val,
|
|
n_layer=self.num_hidden_layers,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.vocab_size - 1,
|
|
init_range=self.init_range,
|
|
num_labels=self.num_labels,
|
|
)
|
|
|
|
return (config, input_ids_1, input_ids_2, lm_labels)
|
|
|
|
def set_seed(self):
|
|
random.seed(self.seed)
|
|
tf.random.set_seed(self.seed)
|
|
|
|
def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
model = TFTransfoXLModel(config)
|
|
|
|
hidden_states_1, mems_1 = model(input_ids_1).to_tuple()
|
|
|
|
inputs = {"input_ids": input_ids_2, "mems": mems_1}
|
|
|
|
hidden_states_2, mems_2 = model(inputs).to_tuple()
|
|
|
|
self.parent.assertEqual(hidden_states_1.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(hidden_states_2.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_1],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_2],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
model = TFTransfoXLLMHeadModel(config)
|
|
|
|
lm_logits_1, mems_1 = model(input_ids_1).to_tuple()
|
|
|
|
inputs = {"input_ids": input_ids_1, "labels": lm_labels}
|
|
_, mems_1 = model(inputs).to_tuple()
|
|
|
|
lm_logits_2, mems_2 = model([input_ids_2, mems_1]).to_tuple()
|
|
|
|
inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}
|
|
|
|
_, mems_2 = model(inputs).to_tuple()
|
|
|
|
self.parent.assertEqual(lm_logits_1.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_1],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
self.parent.assertEqual(lm_logits_2.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_2],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_transfo_xl_for_sequence_classification(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
model = TFTransfoXLForSequenceClassification(config)
|
|
result = model(input_ids_1)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids_1}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
|
|
)
|
|
all_generative_model_classes = () if is_tf_available() else ()
|
|
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
test_mismatched_shapes = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFTransfoXLModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_transfo_xl_model(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_transfo_xl_model(*config_and_inputs)
|
|
|
|
def test_transfo_xl_lm_head(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_transfo_xl_lm_head(*config_and_inputs)
|
|
|
|
def test_transfo_xl_sequence_classification_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_model_common_attributes(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
list_other_models_with_output_ebd = [TFTransfoXLForSequenceClassification]
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
|
|
if model_class in list_other_models_with_output_ebd:
|
|
x = model.get_output_embeddings()
|
|
assert isinstance(x, tf.keras.layers.Layer)
|
|
name = model.get_bias()
|
|
assert name is None
|
|
else:
|
|
x = model.get_output_embeddings()
|
|
assert x is None
|
|
name = model.get_bias()
|
|
assert name is None
|
|
|
|
def test_xla_mode(self):
|
|
# TODO JP: Make TransfoXL XLA compliant
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFTransfoXLModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFTransfoXLModelLanguageGenerationTest(unittest.TestCase):
|
|
@unittest.skip("Skip test until #12651 is resolved.")
|
|
@slow
|
|
def test_lm_generate_transfo_xl_wt103(self):
|
|
model = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
|
|
# fmt: off
|
|
input_ids = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]],dtype=tf.int32) # noqa: E231
|
|
# fmt: on
|
|
# In 1991 , the remains of Russian Tsar Nicholas II and his family
|
|
# ( except for Alexei and Maria ) are discovered .
|
|
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
|
|
# remainder of the story . 1883 Western Siberia ,
|
|
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
|
|
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
|
|
# father initially slaps him for making such an accusation , Rasputin watches as the
|
|
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
|
|
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
|
|
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
|
|
|
|
# fmt: off
|
|
expected_output_ids = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231
|
|
# fmt: on
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family (
|
|
# except for Alexei and Maria ) are discovered. The voice of young son,
|
|
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
|
|
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
|
|
# and a group of men to perform magic. Rasputin has a vision and
|
|
# denounces one of the men as a horse thief. Although his father initially
|
|
# slaps him for making such an accusation, Rasputin watches as the man
|
|
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
|
|
# of the Virgin Mary, prompting him to become a priest.
|
|
# Rasputin quickly becomes famous, with people, even a bishop, begging for
|
|
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
|
|
# Nicholas II and his family were discovered. The voice of <unk> young son,
|
|
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
|
|
|
|
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|