transformers/docs/source/model_doc/transformerxl.rst
2020-10-26 15:48:36 -04:00

91 lines
4.0 KiB
ReStructuredText

Transformer XL
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Transformer-XL model was proposed in `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
<https://arxiv.org/abs/1901.02860>`__ by Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan
Salakhutdinov. It's a causal (uni-directional) transformer with relative positioning (sinusoïdal) embeddings which can
reuse previously computed hidden-states to attend to longer context (memory). This model also uses adaptive softmax
inputs and outputs (tied).
The abstract from the paper is the following:
*Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the
setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency
beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a
novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the
context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450%
longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+
times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of
bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn
Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably
coherent, novel text articles with thousands of tokens.*
Tips:
- Transformer-XL uses relative sinusoidal positional embeddings. Padding can be done on the left or on the right. The
original implementation trains on SQuAD with padding on the left, therefore the padding defaults are set to left.
- Transformer-XL is one of the few models that has no sequence length limit.
The original code can be found `here <https://github.com/kimiyoung/transformer-xl>`__.
TransfoXLConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLConfig
:members:
TransfoXLTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLTokenizer
:members: save_vocabulary
TransfoXL specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_transfo_xl.TransfoXLModelOutput
:members:
.. autoclass:: transformers.modeling_transfo_xl.TransfoXLLMHeadModelOutput
:members:
.. autoclass:: transformers.modeling_tf_transfo_xl.TFTransfoXLModelOutput
:members:
.. autoclass:: transformers.modeling_tf_transfo_xl.TFTransfoXLLMHeadModelOutput
:members:
TransfoXLModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLModel
:members: forward
TransfoXLLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLLMHeadModel
:members: forward
TFTransfoXLModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTransfoXLModel
:members: call
TFTransfoXLLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTransfoXLLMHeadModel
:members: call