transformers/docs/source/model_doc/splinter.rst
Ori Ram 439a43b6b4
Add splinter (#12955)
* splinter template

* initialize splinter classes

* Splinter Tokenizer

* splinter.rst

* tokenization fixes

* Documentation & some minor variable name changes

* bug fix (added back question_token_id to config) + variable names

* Minor bug fixes + variable name changes

* Fix Splinter references after merge with new transformers

* changes after running make style & quality

* Fix documentation unindent

* Fix doc indentation in tokenization_splinter

* Fix also SplinterTokenizerFast

* Add Splinter to index.rst and README

* Fixdouble whitespace from index.rst

* Fixed index.rst with 'make fix-copies'

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/splinter/__init__.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Added "copied from BERT" comments

* Removing unnexessary code from modeling_splinter

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove references to TF modeling from splinter

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove unnecessary check

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add differences between Splinter and Bert tokenizers

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/tokenization_splinter_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove unnecessary check

* Doc formatting

* Update src/transformers/models/splinter/tokenization_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/tokenization_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* bug fix: remove load_tf_weights attribute

* Some minor quality changes

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Change FullyConnectedLayer to SplinterFullyConnectedLayer

* Variable naming

* Reove gather_positions function

* Remove ClassificationHead as it's outdated

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove hardcoded 102 token id

* Minor style change

* Added "tau" organization to all model identifiers & URLS

* Added tau to the tests as well

* Copy-from comments

* Removed all unnecessary classes (e.g. SplinterForMaskedLM)

* Running make fix-copies

* Bug fix: Further removed unnecessary classes

* Add Splinter to AutoTokenization

* Add an integration test for Splinter

* Removed initialize_new_qass from config - It will be done through different checkpoints

* Removed `initialize_new_qass` from documentation as well

* Added new checkpoint names (`tau/splinter-base-qass` and same for large) in the code

* Minor change to test

* SplinterTokenizer now doesn't abstract from BertTokenizer

* SplinterTokenizerFast also dosn't abstract from Bert

* style and quality

* bug fix: import ing torch in tests only if it's available

* Auto mappings

* Changed copyrights in Splinter's files

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: yuvalkirstain <kirstain.yuval@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-08-17 08:29:01 -04:00

88 lines
4.8 KiB
ReStructuredText

..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Splinter
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Splinter model was proposed in `Few-Shot Question Answering by Pretraining Span Selection
<https://arxiv.org/abs/2101.00438>`__ by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. Splinter
is an encoder-only transformer (similar to BERT) pretrained using the recurring span selection task on a large corpus
comprising Wikipedia and the Toronto Book Corpus.
The abstract from the paper is the following:
In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an order
of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred
training examples are available, and observe that standard models perform poorly, highlighting the discrepancy between
current pretraining objectives and question answering. We propose a new pretraining scheme tailored for question
answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each set all
recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans
are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select
the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g., 72.7 F1 on SQuAD
with only 128 training examples), while maintaining competitive performance in the high-resource setting.
Tips:
- Splinter was trained to predict answers spans conditioned on a special [QUESTION] token. These tokens contextualize
to question representations which are used to predict the answers. This layer is called QASS, and is the default
behaviour in the :class:`~transformers.SplinterForQuestionAnswering` class. Therefore:
- Use :class:`~transformers.SplinterTokenizer` (rather than :class:`~transformers.BertTokenizer`), as it already
contains this special token. Also, its default behavior is to use this token when two sequences are given (for
example, in the `run_qa.py` script).
- If you plan on using Splinter outside `run_qa.py`, please keep in mind the question token - it might be important for
the success of your model, especially in a few-shot setting.
- Please note there are two different checkpoints for each size of Splinter. Both are basically the same, except that
one also has the pretrained wights of the QASS layer (`tau/splinter-base-qass` and `tau/splinter-large-qass`) and one
doesn't (`tau/splinter-base` and `tau/splinter-large`). This is done to support randomly initializing this layer at
fine-tuning, as it is shown to yield better results for some cases in the paper.
This model was contributed by `yuvalkirstain <https://huggingface.co/yuvalkirstain>`__ and `oriram
<https://huggingface.co/oriram>`__. The original code can be found `here <https://github.com/oriram/splinter>`__.
SplinterConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SplinterConfig
:members:
SplinterTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SplinterTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
SplinterTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SplinterTokenizerFast
:members:
SplinterModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SplinterModel
:members: forward
SplinterForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SplinterForQuestionAnswering
:members: forward