transformers/examples/research_projects/rag/test_distributed_retriever.py
Sylvain Gugger 783d7d2629
Reorganize examples (#9010)
* Reorganize example folder

* Continue reorganization

* Change requirements for tests

* Final cleanup

* Finish regroup with tests all passing

* Copyright

* Requirements and readme

* Make a full link for the documentation

* Address review comments

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add symlink

* Reorg again

* Apply suggestions from code review

Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>

* Adapt title

* Update to new strucutre

* Remove test

* Update READMEs

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2020-12-11 10:07:02 -05:00

225 lines
9.5 KiB
Python

import json
import os
import shutil
import sys
import tempfile
import unittest
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
import faiss
from transformers import BartConfig, BartTokenizer, DPRConfig, DPRQuestionEncoderTokenizer, RagConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_psutil_available, is_torch_available
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.rag.retrieval_rag import CustomHFIndex
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch_non_multi_gpu_but_fix_me
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # noqa: E402 # isort:skip
from distributed_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
def require_distributed_retrieval(test_case):
"""
Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
:class:`~transformers.RagRetriever`.
These tests are skipped when respective libraries are not installed.
"""
if not (is_torch_available() and is_datasets_available() and is_faiss_available() and is_psutil_available()):
test_case = unittest.skip("test requires PyTorch, Datasets, Faiss, psutil")(test_case)
return test_case
@require_distributed_retrieval
class RagRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.retrieval_vector_size = 8
# DPR tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
os.makedirs(dpr_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
# BART tok
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
os.makedirs(bart_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
def get_bart_tokenizer(self) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
}
)
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
return dataset
def get_dummy_pytorch_distributed_retriever(
self, init_retrieval: bool, port=12345
) -> RagPyTorchDistributedRetriever:
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
def get_dummy_custom_hf_index_retriever(self, init_retrieval: bool, from_disk: bool, port=12345):
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
index_name="custom",
)
if from_disk:
config.passages_path = os.path.join(self.tmpdirname, "dataset")
config.index_path = os.path.join(self.tmpdirname, "index.faiss")
dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
dataset.drop_index("embeddings")
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
del dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
else:
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
index=CustomHFIndex(config.retrieval_vector_size, dataset),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
@require_torch_non_multi_gpu_but_fix_me
def test_pytorch_distributed_retriever_retrieve(self):
n_docs = 1
retriever = self.get_dummy_pytorch_distributed_retriever(init_retrieval=True)
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
self.assertEqual(len(doc_dicts), 2)
self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]])
@require_torch_non_multi_gpu_but_fix_me
def test_custom_hf_index_retriever_retrieve(self):
n_docs = 1
retriever = self.get_dummy_custom_hf_index_retriever(init_retrieval=True, from_disk=False)
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
self.assertEqual(len(doc_dicts), 2)
self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]])
@require_torch_non_multi_gpu_but_fix_me
def test_custom_pytorch_distributed_retriever_retrieve_from_disk(self):
n_docs = 1
retriever = self.get_dummy_custom_hf_index_retriever(init_retrieval=True, from_disk=True)
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
self.assertEqual(len(doc_dicts), 2)
self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]])