transformers/examples/research_projects/rag/finetune_rag.py
Sylvain Gugger 783d7d2629
Reorganize examples (#9010)
* Reorganize example folder

* Continue reorganization

* Change requirements for tests

* Final cleanup

* Finish regroup with tests all passing

* Copyright

* Requirements and readme

* Make a full link for the documentation

* Address review comments

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add symlink

* Reorg again

* Apply suggestions from code review

Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>

* Adapt title

* Update to new strucutre

* Remove test

* Update READMEs

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2020-12-11 10:07:02 -05:00

513 lines
20 KiB
Python

"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py"""
import argparse
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
import torch.distributed as dist
from pytorch_lightning.accelerators.ddp_accelerator import DDPAccelerator
from pytorch_lightning.cluster_environments import TorchElasticEnvironment
from torch.utils.data import DataLoader
from transformers import (
AutoConfig,
AutoTokenizer,
BartForConditionalGeneration,
BatchEncoding,
RagConfig,
RagSequenceForGeneration,
RagTokenForGeneration,
RagTokenizer,
T5ForConditionalGeneration,
)
from transformers import logging as transformers_logging
from callbacks_rag import ( # noqa: E402 # isort:skipq
get_checkpoint_callback,
get_early_stopping_callback,
Seq2SeqLoggingCallback,
)
from distributed_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
from utils_rag import ( # noqa: E402 # isort:skip
calculate_exact_match,
flatten_list,
get_git_info,
is_rag_model,
lmap,
pickle_save,
save_git_info,
save_json,
set_extra_model_params,
Seq2SeqDataset,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
transformers_logging.set_verbosity_info()
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
# In PTL >v1.0, `init_ddp_connection` method in the `LightningModule`
# is no longer used, and is moved into DDPAccelerator instead.
# We override DDPAccelerator to add our custom logic for initializing the
# retriever.
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/tests/backends/test_accelerator_connector.py
class CustomAccel(DDPAccelerator):
def __init__(self, trainer=None, **kwargs):
# Trainer is set later.
super().__init__(trainer, **kwargs)
def init_ddp_connection(self, global_rank: int, world_size: int, is_slurm_managing_tasks: bool = True):
logger.info("Custom init_ddp_connection.")
module = self.trainer.model
if self.cluster_environment is None:
self.cluster_environment = TorchElasticEnvironment()
self.distributed_port = module.hparams.distributed_port
os.environ["MASTER_PORT"] = str(self.distributed_port)
super().init_ddp_connection(global_rank, world_size, is_slurm_managing_tasks)
if module.is_rag_model:
module.model.rag.retriever.init_retrieval(self.distributed_port)
class GenerativeQAModule(BaseTransformer):
mode = "generative_qa"
loss_names = ["loss"]
metric_names = ["em"]
val_metric = "em"
def __init__(self, hparams, **kwargs):
# when loading from a pytorch lightning checkpoint, hparams are passed as dict
if isinstance(hparams, dict):
hparams = AttrDict(hparams)
if hparams.model_type == "rag_sequence":
self.model_class = RagSequenceForGeneration
elif hparams.model_type == "rag_token":
self.model_class = RagTokenForGeneration
elif hparams.model_type == "bart":
self.model_class = BartForConditionalGeneration
else:
self.model_class = T5ForConditionalGeneration
self.is_rag_model = is_rag_model(hparams.model_type)
config_class = RagConfig if self.is_rag_model else AutoConfig
config = config_class.from_pretrained(hparams.model_name_or_path)
# set retriever parameters
config.index_name = hparams.index_name or config.index_name
config.passages_path = hparams.passages_path or config.passages_path
config.index_path = hparams.index_path or config.index_path
config.use_dummy_dataset = hparams.use_dummy_dataset
# set extra_model_params for generator configs and load_model
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout")
if self.is_rag_model:
if hparams.prefix is not None:
config.generator.prefix = hparams.prefix
config.label_smoothing = hparams.label_smoothing
hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator)
retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever)
prefix = config.question_encoder.prefix
else:
if hparams.prefix is not None:
config.prefix = hparams.prefix
hparams, config = set_extra_model_params(extra_model_params, hparams, config)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config)
prefix = config.prefix
tokenizer = (
RagTokenizer.from_pretrained(hparams.model_name_or_path)
if self.is_rag_model
else AutoTokenizer.from_pretrained(hparams.model_name_or_path)
)
super().__init__(hparams, config=config, tokenizer=tokenizer, model=model)
save_git_info(self.hparams.output_dir)
self.output_dir = Path(self.hparams.output_dir)
self.metrics_save_path = Path(self.output_dir) / "metrics.json"
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = 0
self.metrics = defaultdict(list)
self.dataset_kwargs: dict = dict(
data_dir=self.hparams.data_dir,
max_source_length=self.hparams.max_source_length,
prefix=prefix or "",
)
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
self.hparams.git_sha = get_git_info()["repo_sha"]
self.num_workers = hparams.num_workers
self.distributed_port = self.hparams.distributed_port
# For single GPU training, init_ddp_connection is not called.
# So we need to initialize the retrievers here.
if hparams.gpus <= 1:
self.model.retriever.init_retrieval(self.distributed_port)
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
rag_kwargs = {}
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(target_ids)
lm_labels = target_ids
elif isinstance(self.model, BartForConditionalGeneration):
decoder_input_ids = target_ids[:, :-1].contiguous()
lm_labels = target_ids[:, 1:].clone()
else:
assert self.is_rag_model
generator = self.model.rag.generator
if isinstance(generator, T5ForConditionalGeneration):
decoder_start_token_id = generator.config.decoder_start_token_id
decoder_input_ids = (
torch.cat(
[torch.Tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids],
dim=1,
)
if target_ids.shape[0] < self.target_lens["train"]
else generator._shift_right(target_ids)
)
elif isinstance(generator, BartForConditionalGeneration):
decoder_input_ids = target_ids
lm_labels = decoder_input_ids
rag_kwargs["reduce_loss"] = True
assert decoder_input_ids is not None
outputs = self(
source_ids,
attention_mask=source_mask,
decoder_input_ids=decoder_input_ids,
use_cache=False,
labels=lm_labels,
**rag_kwargs,
)
loss = outputs["loss"]
return (loss,)
@property
def pad(self) -> int:
raise NotImplementedError("pad not implemented")
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
src_pad_token_id = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
logs["tpb"] = (
batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum()
)
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
gen_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss)
gen_metrics.update({k: v.item() for k, v in losses.items()})
# fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424
if dist.is_initialized():
dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)
metrics_tensor = metrics_tensor / dist.get_world_size()
gen_metrics.update({self.val_metric: metrics_tensor.item()})
losses.update(gen_metrics)
metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
metrics["step_count"] = self.step_count
self.save_metrics(metrics, prefix) # writes to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metrics_tensor}
def save_metrics(self, latest_metrics, type_path) -> None:
self.metrics[type_path].append(latest_metrics)
save_json(self.metrics, self.metrics_save_path)
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_exact_match(preds, target)
def _generative_step(self, batch: dict) -> dict:
start_time = time.time()
batch = BatchEncoding(batch).to(device=self.model.device)
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
do_deduplication=False, # rag specific parameter
use_cache=True,
min_length=1,
max_length=self.target_lens["val"],
)
gen_time = (time.time() - start_time) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"])
loss_tensors = self._step(batch)
base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
gen_metrics: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics)
return base_metrics
def test_step(self, batch, batch_idx):
return self._generative_step(batch)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = Seq2SeqDataset(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
)
return dataloader
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> DataLoader:
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count))
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_target_length",
default=25,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--val_max_target_length",
default=25,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--test_max_target_length",
default=25,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument(
"--prefix",
type=str,
default=None,
help="Prefix added at the beginning of each text, typically used with T5-based models.",
)
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
)
parser.add_argument(
"--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training."
)
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token", "bart", "t5"],
type=str,
help="RAG model type: sequence or token, if none specified, the type is inferred from the model_name_or_path",
)
return parser
@staticmethod
def add_retriever_specific_args(parser):
parser.add_argument(
"--index_name",
type=str,
default=None,
help="Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom' for a local index, or 'legacy' for the orignal one)",
)
parser.add_argument(
"--passages_path",
type=str,
default=None,
help="Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`",
)
parser.add_argument(
"--index_path",
type=str,
default=None,
help="Path to the faiss index for custom index. More info about custom indexes in the RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`",
)
parser.add_argument(
"--use_dummy_dataset",
type=bool,
default=False,
help="Whether to use the dummy version of the dataset index. More info about custom indexes in the RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`",
)
return parser
def main(args=None, model=None) -> GenerativeQAModule:
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
parser = GenerativeQAModule.add_retriever_specific_args(parser)
args = args or parser.parse_args()
Path(args.output_dir).mkdir(exist_ok=True)
if model is None:
model: GenerativeQAModule = GenerativeQAModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
es_callback = (
get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
if args.early_stopping_patience >= 0
else False
)
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
early_stopping_callback=es_callback,
logger=logger,
accelerator=CustomAccel() if args.gpus > 1 else None,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
main()