mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-23 06:20:22 +06:00
138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers.integrations import is_deepspeed_available
|
|
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multi_gpu
|
|
from transformers.trainer_callback import TrainerState
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
set_seed(42)
|
|
MBART_TINY = "sshleifer/tiny-mbart"
|
|
|
|
|
|
def load_json(path):
|
|
with open(path) as f:
|
|
return json.load(f)
|
|
|
|
|
|
# a candidate for testing_utils
|
|
def require_deepspeed(test_case):
|
|
"""
|
|
Decorator marking a test that requires deepspeed
|
|
"""
|
|
if not is_deepspeed_available():
|
|
return unittest.skip("test requires deepspeed")(test_case)
|
|
else:
|
|
return test_case
|
|
|
|
|
|
@require_deepspeed
|
|
class TestDeepSpeed(TestCasePlus):
|
|
|
|
# XXX: need to do better validation beyond just that the run was successful
|
|
def run_quick(self, distributed=None, extra_args_str=None, remove_args_str=None):
|
|
output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
|
|
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
|
|
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
|
|
first_step_stats = eval_metrics[0]
|
|
assert "eval_bleu" in first_step_stats
|
|
|
|
def run_quick_no_train(self, distributed=None, extra_args_str=None):
|
|
remove_args_str = "--do_train"
|
|
output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
|
|
val_metrics = load_json(os.path.join(output_dir, "val_results.json"))
|
|
assert "val_bleu" in val_metrics
|
|
test_metrics = load_json(os.path.join(output_dir, "test_results.json"))
|
|
assert "test_bleu" in test_metrics
|
|
|
|
@require_torch_multi_gpu
|
|
def test_basic(self):
|
|
self.run_quick()
|
|
|
|
@require_torch_multi_gpu
|
|
def test_grad_acum(self):
|
|
self.run_quick(extra_args_str="--gradient_accumulation_steps 2")
|
|
|
|
@require_torch_multi_gpu
|
|
def test_no_train(self):
|
|
# we should not fail if train is skipped
|
|
self.run_quick_no_train()
|
|
|
|
def run_trainer(
|
|
self,
|
|
eval_steps: int,
|
|
max_len: str,
|
|
model_name: str,
|
|
num_train_epochs: int,
|
|
distributed: bool = False,
|
|
extra_args_str: str = None,
|
|
remove_args_str: str = None,
|
|
):
|
|
data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args = f"""
|
|
--model_name_or_path {model_name}
|
|
--data_dir {data_dir}
|
|
--output_dir {output_dir}
|
|
--overwrite_output_dir
|
|
--n_train 8
|
|
--n_val 8
|
|
--max_source_length {max_len}
|
|
--max_target_length {max_len}
|
|
--val_max_target_length {max_len}
|
|
--do_train
|
|
--do_eval
|
|
--do_predict
|
|
--num_train_epochs {str(num_train_epochs)}
|
|
--per_device_train_batch_size 4
|
|
--per_device_eval_batch_size 4
|
|
--learning_rate 3e-3
|
|
--warmup_steps 8
|
|
--evaluation_strategy steps
|
|
--predict_with_generate
|
|
--logging_steps 0
|
|
--save_steps {str(eval_steps)}
|
|
--eval_steps {str(eval_steps)}
|
|
--group_by_length
|
|
--label_smoothing_factor 0.1
|
|
--adafactor
|
|
--task translation
|
|
--tgt_lang ro_RO
|
|
--src_lang en_XX
|
|
""".split()
|
|
# --eval_beams 2
|
|
|
|
if extra_args_str is not None:
|
|
args.extend(extra_args_str.split())
|
|
|
|
if remove_args_str is not None:
|
|
remove_args = remove_args_str.split()
|
|
args = [x for x in args if x not in remove_args]
|
|
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
|
|
distributed_args = f"""
|
|
{self.test_file_dir}/../../seq2seq/finetune_trainer.py
|
|
""".split()
|
|
cmd = ["deepspeed"] + distributed_args + args + ds_args
|
|
# keep for quick debug
|
|
# print(" ".join(cmd)); die
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
return output_dir
|