mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00

* splitting fast and slow tokenizers [WIP] * [WIP] splitting sentencepiece and tokenizers dependencies * update dummy objects * add name_or_path to models and tokenizers * prefix added to file names * prefix * styling + quality * spliting all the tokenizer files - sorting sentencepiece based ones * update tokenizer version up to 0.9.0 * remove hard dependency on sentencepiece 🎉 * and removed hard dependency on tokenizers 🎉 * update conversion script * update missing models * fixing tests * move test_tokenization_fast to main tokenization tests - fix bugs * bump up tokenizers * fix bert_generation * update ad fix several tokenizers * keep sentencepiece in deps for now * fix funnel and deberta tests * fix fsmt * fix marian tests * fix layoutlm * fix squeezebert and gpt2 * fix T5 tokenization * fix xlnet tests * style * fix mbart * bump up tokenizers to 0.9.2 * fix model tests * fix tf models * fix seq2seq examples * fix tests without sentencepiece * fix slow => fast conversion without sentencepiece * update auto and bert generation tests * fix mbart tests * fix auto and common test without tokenizers * fix tests without tokenizers * clean up tests lighten up when tokenizers + sentencepiece are both off * style quality and tests fixing * add sentencepiece to doc/examples reqs * leave sentencepiece on for now * style quality split hebert and fix pegasus * WIP Herbert fast * add sample_text_no_unicode and fix hebert tokenization * skip FSMT example test for now * fix style * fix fsmt in example tests * update following Lysandre and Sylvain's comments * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
70 lines
2.9 KiB
Python
70 lines
2.9 KiB
Python
import unittest
|
|
|
|
from transformers import PegasusTokenizer, PegasusTokenizerFast
|
|
from transformers.file_utils import cached_property
|
|
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
|
|
tokenizer_class = PegasusTokenizer
|
|
rust_tokenizer_class = PegasusTokenizerFast
|
|
test_rust_tokenizer = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = PegasusTokenizer(SAMPLE_VOCAB)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
@cached_property
|
|
def pegasus_large_tokenizer(self):
|
|
return PegasusTokenizer.from_pretrained("google/pegasus-large")
|
|
|
|
@unittest.skip("add_tokens does not work yet")
|
|
def test_swap_special_token(self):
|
|
pass
|
|
|
|
def get_tokenizer(self, **kwargs) -> PegasusTokenizer:
|
|
return PegasusTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
return ("This is a test", "This is a test")
|
|
|
|
def test_pegasus_large_tokenizer_settings(self):
|
|
tokenizer = self.pegasus_large_tokenizer
|
|
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
|
|
assert tokenizer.vocab_size == 96103
|
|
assert tokenizer.pad_token_id == 0
|
|
assert tokenizer.eos_token_id == 1
|
|
assert tokenizer.offset == 103
|
|
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
|
|
assert tokenizer.unk_token == "<unk>"
|
|
assert tokenizer.mask_token is None
|
|
assert tokenizer.mask_token_id is None
|
|
assert tokenizer.model_max_length == 1024
|
|
raw_input_str = "To ensure a smooth flow of bank resolutions."
|
|
desired_result = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
|
|
ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0]
|
|
self.assertListEqual(desired_result, ids)
|
|
assert tokenizer.convert_ids_to_tokens([0, 1, 2]) == ["<pad>", "</s>", "unk_2"]
|
|
|
|
@require_torch
|
|
def test_pegasus_large_seq2seq_truncation(self):
|
|
src_texts = ["This is going to be way too long." * 150, "short example"]
|
|
tgt_texts = ["not super long but more than 5 tokens", "tiny"]
|
|
batch = self.pegasus_large_tokenizer.prepare_seq2seq_batch(src_texts, tgt_texts=tgt_texts, max_target_length=5)
|
|
assert batch.input_ids.shape == (2, 1024)
|
|
assert batch.attention_mask.shape == (2, 1024)
|
|
assert "labels" in batch # because tgt_texts was specified
|
|
assert batch.labels.shape == (2, 5)
|
|
assert len(batch) == 3 # input_ids, attention_mask, labels. Other things make by BartModel
|