mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00

* Updated ConversationalPipeline to work with encoder-decoder models (e.g. BlenderBot) * Addition of integration test for EncoderDecoder conversation model Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
146 lines
7.3 KiB
Python
146 lines
7.3 KiB
Python
import unittest
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Conversation, ConversationalPipeline, pipeline
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from .test_pipelines_common import MonoInputPipelineCommonMixin
|
|
|
|
|
|
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
|
|
|
|
|
|
class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
|
|
pipeline_task = "conversational"
|
|
small_models = [] # Models tested without the @slow decorator
|
|
large_models = ["microsoft/DialoGPT-medium"] # Models tested with the @slow decorator
|
|
invalid_inputs = ["Hi there!", Conversation()]
|
|
|
|
def _test_pipeline(
|
|
self, nlp
|
|
): # override the default test method to check that the output is a `Conversation` object
|
|
self.assertIsNotNone(nlp)
|
|
|
|
# We need to recreate conversation for successive tests to pass as
|
|
# Conversation objects get *consumed* by the pipeline
|
|
conversation = Conversation("Hi there!")
|
|
mono_result = nlp(conversation)
|
|
self.assertIsInstance(mono_result, Conversation)
|
|
|
|
conversations = [Conversation("Hi there!"), Conversation("How are you?")]
|
|
multi_result = nlp(conversations)
|
|
self.assertIsInstance(multi_result, list)
|
|
self.assertIsInstance(multi_result[0], Conversation)
|
|
# Conversation have been consumed and are not valid anymore
|
|
# Inactive conversations passed to the pipeline raise a ValueError
|
|
self.assertRaises(ValueError, nlp, conversation)
|
|
self.assertRaises(ValueError, nlp, conversations)
|
|
|
|
for bad_input in self.invalid_inputs:
|
|
self.assertRaises(Exception, nlp, bad_input)
|
|
self.assertRaises(Exception, nlp, self.invalid_inputs)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation(self):
|
|
# When
|
|
nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
|
|
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
|
|
conversation_2 = Conversation("What's the last book you have read?")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
self.assertEqual(len(conversation_2.past_user_inputs), 0)
|
|
# When
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 1)
|
|
self.assertEqual(len(result[1].past_user_inputs), 1)
|
|
self.assertEqual(len(result[0].generated_responses), 1)
|
|
self.assertEqual(len(result[1].generated_responses), 1)
|
|
self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
|
|
self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
|
|
self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
|
|
self.assertEqual(result[1].generated_responses[0], "The Last Question")
|
|
# When
|
|
conversation_2.add_user_input("Why do you recommend it?")
|
|
result = nlp(conversation_2, do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, conversation_2)
|
|
self.assertEqual(len(result.past_user_inputs), 2)
|
|
self.assertEqual(len(result.generated_responses), 2)
|
|
self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
|
|
self.assertEqual(result.generated_responses[1], "It's a good book.")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_truncated_history(self):
|
|
# When
|
|
nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
|
|
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
# When
|
|
result = nlp(conversation_1, do_sample=False, max_length=36)
|
|
# Then
|
|
self.assertEqual(result, conversation_1)
|
|
self.assertEqual(len(result.past_user_inputs), 1)
|
|
self.assertEqual(len(result.generated_responses), 1)
|
|
self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
|
|
self.assertEqual(result.generated_responses[0], "The Big Lebowski")
|
|
# When
|
|
conversation_1.add_user_input("Is it an action movie?")
|
|
result = nlp(conversation_1, do_sample=False, max_length=36)
|
|
# Then
|
|
self.assertEqual(result, conversation_1)
|
|
self.assertEqual(len(result.past_user_inputs), 2)
|
|
self.assertEqual(len(result.generated_responses), 2)
|
|
self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
|
|
self.assertEqual(result.generated_responses[1], "It's a comedy.")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_encoder_decoder(self):
|
|
# When
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-90M")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-90M")
|
|
nlp = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
|
|
|
|
conversation_1 = Conversation("My name is Sarah and I live in London")
|
|
conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
self.assertEqual(len(conversation_2.past_user_inputs), 0)
|
|
# When
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 1)
|
|
self.assertEqual(len(result[1].past_user_inputs), 1)
|
|
self.assertEqual(len(result[0].generated_responses), 1)
|
|
self.assertEqual(len(result[1].generated_responses), 1)
|
|
self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
|
|
self.assertEqual(
|
|
result[0].generated_responses[0],
|
|
"hi sarah, i live in london as well. do you have any plans for the weekend?",
|
|
)
|
|
self.assertEqual(
|
|
result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
|
|
)
|
|
self.assertEqual(
|
|
result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
|
|
)
|
|
# When
|
|
conversation_1.add_user_input("Not yet, what about you?")
|
|
conversation_2.add_user_input("What's your name?")
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 2)
|
|
self.assertEqual(len(result[1].past_user_inputs), 2)
|
|
self.assertEqual(len(result[0].generated_responses), 2)
|
|
self.assertEqual(len(result[1].generated_responses), 2)
|
|
self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
|
|
self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
|
|
self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
|
|
self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
|