transformers/examples/seq2seq/test_finetune_trainer.py
Stas Bekman 5423f2a9d4
[testing] port test_trainer_distributed to distributed pytest + TestCasePlus enhancements (#8107)
* move the helper code into testing_utils

* port test_trainer_distributed to work with pytest

* improve docs

* simplify notes

* doc

* doc

* style

* doc

* further improvements

* torch might not be available

* real fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2020-10-28 11:51:32 -04:00

215 lines
7.9 KiB
Python

import os
import sys
from unittest.mock import patch
from transformers import BertTokenizer, EncoderDecoderModel, is_torch_available
from transformers.file_utils import is_datasets_available
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, slow
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
from .test_seq2seq_examples import MBART_TINY
if is_torch_available():
import torch
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
class TestFinetuneTrainer(TestCasePlus):
def test_finetune_trainer(self):
output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
assert "eval_bleu" in first_step_stats
@slow
def test_finetune_trainer_slow(self):
# There is a missing call to __init__process_group somewhere
output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"] # model learned nothing
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.json" in contents
@slow
def test_finetune_bert2bert(self):
if not is_datasets_available():
return
import datasets
bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
bert2bert.config.eos_token_id = tokenizer.sep_token_id
bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
bert2bert.config.max_length = 128
train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")
train_dataset = train_dataset.select(range(32))
val_dataset = val_dataset.select(range(16))
rouge = datasets.load_metric("rouge")
batch_size = 4
def _map_to_encoder_decoder_inputs(batch):
# Tokenizer will automatically set [BOS] <text> [EOS]
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["decoder_input_ids"] = outputs.input_ids
batch["labels"] = outputs.input_ids.copy()
batch["labels"] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
batch["decoder_attention_mask"] = outputs.attention_mask
assert all([len(x) == 512 for x in inputs.input_ids])
assert all([len(x) == 128 for x in outputs.input_ids])
return batch
def _compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
# all unnecessary tokens are removed
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
"rouge2"
].mid
return {
"rouge2_precision": round(rouge_output.precision, 4),
"rouge2_recall": round(rouge_output.recall, 4),
"rouge2_fmeasure": round(rouge_output.fmeasure, 4),
}
# map train dataset
train_dataset = train_dataset.map(
_map_to_encoder_decoder_inputs,
batched=True,
batch_size=batch_size,
remove_columns=["article", "highlights"],
)
train_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
)
# same for validation dataset
val_dataset = val_dataset.map(
_map_to_encoder_decoder_inputs,
batched=True,
batch_size=batch_size,
remove_columns=["article", "highlights"],
)
val_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
)
output_dir = self.get_auto_remove_tmp_dir()
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
predict_with_generate=True,
evaluate_during_training=True,
do_train=True,
do_eval=True,
warmup_steps=0,
eval_steps=2,
logging_steps=2,
)
# instantiate trainer
trainer = Seq2SeqTrainer(
model=bert2bert,
args=training_args,
compute_metrics=_compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
# start training
trainer.train()
def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_name_or_path {model_name}
--data_dir {data_dir}
--output_dir {output_dir}
--overwrite_output_dir
--n_train 8
--n_val 8
--max_source_length {max_len}
--max_target_length {max_len}
--val_max_target_length {max_len}
--do_train
--do_eval
--do_predict
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--learning_rate 3e-4
--warmup_steps 8
--evaluate_during_training
--predict_with_generate
--logging_steps 0
--save_steps {str(eval_steps)}
--eval_steps {str(eval_steps)}
--sortish_sampler
--label_smoothing 0.1
--adafactor
--task translation
--tgt_lang ro_RO
--src_lang en_XX
""".split()
# --eval_beams 2
n_gpu = torch.cuda.device_count()
if n_gpu > 1:
distributed_args = f"""
-m torch.distributed.launch
--nproc_per_node={n_gpu}
{self.test_file_dir}/finetune_trainer.py
""".split()
cmd = [sys.executable] + distributed_args + args
execute_subprocess_async(cmd, env=self.get_env())
else:
# 0 or 1 gpu
testargs = ["finetune_trainer.py"] + args
with patch.object(sys, "argv", testargs):
main()
return output_dir