transformers/examples/seq2seq/builtin_trainer/train_distilbart_cnn.sh

25 lines
887 B
Bash

export WANDB_PROJECT=distilbart-trainer
export BS=32
export m=sshleifer/student_cnn_12_6
export tok=facebook/bart-large
export MAX_TGT_LEN=142
python finetune_trainer.py \
--model_name_or_path $m --tokenizer_name $tok \
--data_dir cnn_dm \
--output_dir distilbart-cnn-12-6 --overwrite_output_dir \
--learning_rate=3e-5 \
--warmup_steps 500 --sortish_sampler \
--fp16 \
--n_val 500 \
--gradient_accumulation_steps=1 \
--per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \
--freeze_encoder --freeze_embeds \
--num_train_epochs=2 \
--save_steps 3000 --eval_steps 3000 \
--logging_first_step \
--max_target_length 56 --val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval --do_predict --evaluate_during_training \
--predict_with_generate --sortish_sampler \
"$@"