transformers/docs/source/model_doc/xlnet.rst
Sylvain Gugger 08f534d2da
Doc styling (#8067)
* Important files

* Styling them all

* Revert "Styling them all"

This reverts commit 7d029395fd.

* Syling them for realsies

* Fix syntax error

* Fix benchmark_utils

* More fixes

* Fix modeling auto and script

* Remove new line

* Fixes

* More fixes

* Fix more files

* Style

* Add FSMT

* More fixes

* More fixes

* More fixes

* More fixes

* Fixes

* More fixes

* More fixes

* Last fixes

* Make sphinx happy
2020-10-26 18:26:02 -04:00

185 lines
7.1 KiB
ReStructuredText

XLNet
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The XLNet model was proposed in `XLNet: Generalized Autoregressive Pretraining for Language Understanding
<https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
Quoc V. Le. XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method to learn
bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization
order.
The abstract from the paper is the following:
*With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves
better performance than pretraining approaches based on autoregressive language modeling. However, relying on
corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a
pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive
formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into
pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
margin, including question answering, natural language inference, sentiment analysis, and document ranking.*
Tips:
- The specific attention pattern can be controlled at training and test time using the :obj:`perm_mask` input.
- Due to the difficulty of training a fully auto-regressive model over various factorization order, XLNet is pretrained
using only a sub-set of the output tokens as target which are selected with the :obj:`target_mapping` input.
- To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the :obj:`perm_mask` and
:obj:`target_mapping` inputs to control the attention span and outputs (see examples in
`examples/text-generation/run_generation.py`)
- XLNet is one of the few models that has no sequence length limit.
The original code can be found `here <https://github.com/zihangdai/xlnet/>`__.
XLNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetConfig
:members:
XLNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
XLNet specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_xlnet.XLNetModelOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetLMHeadModelOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetForSequenceClassificationOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetForMultipleChoiceOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetForTokenClassificationOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetForQuestionAnsweringSimpleOutput
:members:
.. autoclass:: transformers.modeling_xlnet.XLNetForQuestionAnsweringOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetModelOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetLMHeadModelOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetForSequenceClassificationOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetForMultipleChoiceOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetForTokenClassificationOutput
:members:
.. autoclass:: transformers.modeling_tf_xlnet.TFXLNetForQuestionAnsweringSimpleOutput
:members:
XLNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetModel
:members: forward
XLNetLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetLMHeadModel
:members: forward
XLNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForSequenceClassification
:members: forward
XLNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForMultipleChoice
:members: forward
XLNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForTokenClassification
:members: forward
XLNetForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForQuestionAnsweringSimple
:members: forward
XLNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForQuestionAnswering
:members: forward
TFXLNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetModel
:members: call
TFXLNetLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetLMHeadModel
:members: call
TFXLNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForSequenceClassification
:members: call
TFLNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForMultipleChoice
:members: call
TFXLNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForTokenClassification
:members: call
TFXLNetForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForQuestionAnsweringSimple
:members: call