transformers/docs/source/model_doc/roberta.rst
Sylvain Gugger 08f534d2da
Doc styling (#8067)
* Important files

* Styling them all

* Revert "Styling them all"

This reverts commit 7d029395fd.

* Syling them for realsies

* Fix syntax error

* Fix benchmark_utils

* More fixes

* Fix modeling auto and script

* Remove new line

* Fixes

* More fixes

* Fix more files

* Style

* Add FSMT

* More fixes

* More fixes

* More fixes

* More fixes

* Fixes

* More fixes

* More fixes

* Last fixes

* Make sphinx happy
2020-10-26 18:26:02 -04:00

149 lines
5.9 KiB
ReStructuredText

RoBERTa
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RoBERTa model was proposed in `RoBERTa: A Robustly Optimized BERT Pretraining Approach
<https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with
much larger mini-batches and learning rates.
The abstract from the paper is the following:
*Language model pretraining has led to significant performance gains but careful comparison between different
approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes,
and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication
study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and
training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every
model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results
highlight the importance of previously overlooked design choices, and raise questions about the source of recently
reported improvements. We release our models and code.*
Tips:
- This implementation is the same as :class:`~transformers.BertModel` with a tiny embeddings tweak as well as a setup
for Roberta pretrained models.
- RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a
different pretraining scheme.
- RoBERTa doesn't have :obj:`token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token :obj:`tokenizer.sep_token` (or :obj:`</s>`)
- :doc:`CamemBERT <camembert>` is a wrapper around RoBERTa. Refer to this page for usage examples.
The original code can be found `here <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_.
RobertaConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaConfig
:members:
RobertaTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
RobertaTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaTokenizerFast
:members: build_inputs_with_special_tokens
RobertaModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaModel
:members: forward
RobertaForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForCausalLM
:members: forward
RobertaForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForMaskedLM
:members: forward
RobertaForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForSequenceClassification
:members: forward
RobertaForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForMultipleChoice
:members: forward
RobertaForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForTokenClassification
:members: forward
RobertaForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForQuestionAnswering
:members: forward
TFRobertaModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaModel
:members: call
TFRobertaForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForMaskedLM
:members: call
TFRobertaForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForSequenceClassification
:members: call
TFRobertaForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForMultipleChoice
:members: call
TFRobertaForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForTokenClassification
:members: call
TFRobertaForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForQuestionAnswering
:members: call