transformers/docs/source/model_doc/rag.rst
Sylvain Gugger 08f534d2da
Doc styling (#8067)
* Important files

* Styling them all

* Revert "Styling them all"

This reverts commit 7d029395fd.

* Syling them for realsies

* Fix syntax error

* Fix benchmark_utils

* More fixes

* Fix modeling auto and script

* Remove new line

* Fixes

* More fixes

* Fix more files

* Style

* Add FSMT

* More fixes

* More fixes

* More fixes

* More fixes

* Fixes

* More fixes

* More fixes

* Last fixes

* Make sphinx happy
2020-10-26 18:26:02 -04:00

85 lines
4.1 KiB
ReStructuredText

RAG
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Retrieval-augmented generation ("RAG") models combine the powers of pretrained dense retrieval (DPR) and
sequence-to-sequence models. RAG models retrieve documents, pass them to a seq2seq model, then marginalize to generate
outputs. The retriever and seq2seq modules are initialized from pretrained models, and fine-tuned jointly, allowing
both retrieval and generation to adapt to downstream tasks.
It is based on the paper `Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
<https://arxiv.org/abs/2005.11401>`__ by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
The abstract from the paper is the following:
*Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve
state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely
manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind
task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge
remain open research problems. Pre-trained models with a differentiable access mechanism to explicit nonparametric
memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a
general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) — models which combine pre-trained
parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a
pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a
pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages
across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our
models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks,
outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation
tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art
parametric-only seq2seq baseline.*
RagConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagConfig
:members:
RagTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagTokenizer
:members: prepare_seq2seq_batch
Rag specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_rag.RetrievAugLMMarginOutput
:members:
.. autoclass:: transformers.modeling_rag.RetrievAugLMOutput
:members:
RagRetriever
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagRetriever
:members:
RagModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagModel
:members: forward
RagSequenceForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagSequenceForGeneration
:members: forward, generate
RagTokenForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RagTokenForGeneration
:members: forward, generate