mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* Important files
* Styling them all
* Revert "Styling them all"
This reverts commit 7d029395fd
.
* Syling them for realsies
* Fix syntax error
* Fix benchmark_utils
* More fixes
* Fix modeling auto and script
* Remove new line
* Fixes
* More fixes
* Fix more files
* Style
* Add FSMT
* More fixes
* More fixes
* More fixes
* More fixes
* Fixes
* More fixes
* More fixes
* Last fixes
* Make sphinx happy
66 lines
3.1 KiB
ReStructuredText
66 lines
3.1 KiB
ReStructuredText
DeBERTa
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
|
<https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
|
|
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
|
|
|
|
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
|
|
RoBERTa.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
|
|
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
|
|
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
|
|
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
|
|
position, respectively, and the attention weights among words are computed using disentangled matrices on their
|
|
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
|
|
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
|
|
of model pre-training and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half
|
|
of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
|
|
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
|
|
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
|
|
|
|
|
|
The original code can be found `here <https://github.com/microsoft/DeBERTa>`__.
|
|
|
|
|
|
DebertaConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaConfig
|
|
:members:
|
|
|
|
|
|
DebertaTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaTokenizer
|
|
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
|
|
create_token_type_ids_from_sequences, save_vocabulary
|
|
|
|
|
|
DebertaModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaModel
|
|
:members:
|
|
|
|
|
|
DebertaPreTrainedModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaPreTrainedModel
|
|
:members:
|
|
|
|
|
|
DebertaForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.DebertaForSequenceClassification
|
|
:members:
|