transformers/docs/source/bertology.rst
Sylvain Gugger 08f534d2da
Doc styling (#8067)
* Important files

* Styling them all

* Revert "Styling them all"

This reverts commit 7d029395fd.

* Syling them for realsies

* Fix syntax error

* Fix benchmark_utils

* More fixes

* Fix modeling auto and script

* Remove new line

* Fixes

* More fixes

* Fix more files

* Style

* Add FSMT

* More fixes

* More fixes

* More fixes

* More fixes

* Fixes

* More fixes

* More fixes

* Last fixes

* Make sphinx happy
2020-10-26 18:26:02 -04:00

27 lines
1.5 KiB
ReStructuredText

BERTology
-----------------------------------------------------------------------------------------------------------------------
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT
(that some call "BERTology"). Some good examples of this field are:
* BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950
* Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
* What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
help people access the inner representations, mainly adapted from the great work of Paul Michel
(https://arxiv.org/abs/1905.10650):
* accessing all the hidden-states of BERT/GPT/GPT-2,
* accessing all the attention weights for each head of BERT/GPT/GPT-2,
* retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: `bertology.py
<https://github.com/huggingface/transformers/blob/master/examples/bertology/run_bertology.py>`_ while extract
information and prune a model pre-trained on GLUE.