mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 10:41:07 +06:00
268 lines
9.5 KiB
Python
268 lines
9.5 KiB
Python
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from transformers import BartTokenizer
|
|
|
|
from .distillation import distill_main, evaluate_checkpoint
|
|
from .finetune import main
|
|
from .run_eval import generate_summaries, run_generate
|
|
from .utils import SummarizationDataset, lmap, pickle_load
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
FP16_EVER = False
|
|
CHEAP_ARGS = {
|
|
"logger": "default",
|
|
"num_workers": 2,
|
|
"alpha_hid": 0,
|
|
"freeze_embeds": True,
|
|
"enc_only": False,
|
|
"tgt_suffix": "",
|
|
"resume_from_checkpoint": None,
|
|
"sortish_sampler": True,
|
|
"student_decoder_layers": 1,
|
|
"val_check_interval": 1.0,
|
|
"output_dir": "",
|
|
"fp16": False,
|
|
"no_teacher": False,
|
|
"fp16_opt_level": "O1",
|
|
"gpus": 1 if torch.cuda.is_available() else 0,
|
|
"n_tpu_cores": 0,
|
|
"max_grad_norm": 1.0,
|
|
"do_train": True,
|
|
"do_predict": True,
|
|
"gradient_accumulation_steps": 1,
|
|
"server_ip": "",
|
|
"server_port": "",
|
|
"seed": 42,
|
|
"model_type": "bart",
|
|
"model_name_or_path": "sshleifer/bart-tiny-random",
|
|
"config_name": "",
|
|
"tokenizer_name": "facebook/bart-large",
|
|
"cache_dir": "",
|
|
"do_lower_case": False,
|
|
"learning_rate": 3e-05,
|
|
"weight_decay": 0.0,
|
|
"adam_epsilon": 1e-08,
|
|
"warmup_steps": 0,
|
|
"num_train_epochs": 1,
|
|
"train_batch_size": 2,
|
|
"eval_batch_size": 2,
|
|
"max_source_length": 12,
|
|
"max_target_length": 12,
|
|
"val_max_target_length": 12,
|
|
"test_max_target_length": 12,
|
|
"fast_dev_run": False,
|
|
"no_cache": False,
|
|
"n_train": -1,
|
|
"n_val": -1,
|
|
"n_test": -1,
|
|
"student_encoder_layers": 1,
|
|
"alpha_loss_encoder": 0.0,
|
|
"freeze_encoder": False,
|
|
"auto_scale_batch_size": False,
|
|
}
|
|
|
|
|
|
def _dump_articles(path: Path, articles: list):
|
|
with path.open("w") as f:
|
|
f.write("\n".join(articles))
|
|
|
|
|
|
MSG = "T5 is broken at the moment"
|
|
T5_TINY = "patrickvonplaten/t5-tiny-random"
|
|
|
|
|
|
def make_test_data_dir():
|
|
tmp_dir = Path(tempfile.gettempdir())
|
|
articles = [" Sam ate lunch today", "Sams lunch ingredients"]
|
|
summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
|
|
for split in ["train", "val", "test"]:
|
|
_dump_articles((tmp_dir / f"{split}.source"), articles)
|
|
_dump_articles((tmp_dir / f"{split}.target"), summaries)
|
|
return tmp_dir
|
|
|
|
|
|
class TestSummarizationDistiller(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
|
|
return cls
|
|
|
|
@unittest.skipUnless(torch.cuda.device_count() > 1, "skipping multiGPU test")
|
|
def test_bdc_multigpu(self):
|
|
updates = dict(
|
|
student_encoder_layers=2,
|
|
student_decoder_layers=1,
|
|
no_teacher=True,
|
|
freeze_encoder=True,
|
|
gpus=2,
|
|
sortish_sampler=False,
|
|
fp16_opt_level="O1",
|
|
fp16=FP16_EVER,
|
|
)
|
|
self._bart_distiller_cli(updates)
|
|
|
|
def test_bdc_t5_train(self):
|
|
updates = dict(
|
|
fp16=FP16_EVER,
|
|
gpus=1 if torch.cuda.is_available() else 0,
|
|
model_type="t5",
|
|
model_name_or_path=T5_TINY,
|
|
do_train=True,
|
|
do_predict=True,
|
|
tokenizer_name=T5_TINY,
|
|
no_teacher=True,
|
|
alpha_hid=2.0,
|
|
)
|
|
self._bart_distiller_cli(updates)
|
|
|
|
def test_bdc_no_teacher(self):
|
|
updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True,)
|
|
self._bart_distiller_cli(updates)
|
|
|
|
def test_bdc_yes_teacher(self):
|
|
updates = dict(student_encoder_layers=2, student_decoder_layers=1,)
|
|
self._bart_distiller_cli(updates)
|
|
|
|
def test_bdc_checkpointing(self):
|
|
updates = dict(
|
|
student_encoder_layers=2,
|
|
student_decoder_layers=1,
|
|
num_train_epochs=4,
|
|
val_check_interval=0.25,
|
|
alpha_hid=2.0,
|
|
)
|
|
model = self._bart_distiller_cli(updates, check_contents=False)
|
|
|
|
ckpts = list(Path(model.output_dir).glob("*.ckpt"))
|
|
self.assertEqual(1, len(ckpts))
|
|
transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
|
|
self.assertEqual(len(transformer_ckpts), len(ckpts))
|
|
new_transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
|
|
self.assertEqual(len(new_transformer_ckpts), 1)
|
|
examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
|
|
out_path = tempfile.mktemp()
|
|
generate_summaries(examples, out_path, new_transformer_ckpts[0].parent)
|
|
self.assertTrue(Path(out_path).exists())
|
|
|
|
evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
|
|
|
|
def _bart_distiller_cli(self, updates, check_contents=True):
|
|
default_updates = dict(
|
|
train_batch_size=1,
|
|
eval_batch_size=2,
|
|
num_train_epochs=2,
|
|
alpha_mlm=0.2,
|
|
alpha_ce=0.8,
|
|
do_predict=True,
|
|
gpus=1 if torch.cuda.is_available() else 0,
|
|
model_name_or_path="sshleifer/tinier_bart",
|
|
teacher=CHEAP_ARGS["model_name_or_path"],
|
|
val_check_interval=0.5,
|
|
alpha_encoder_loss=0.4,
|
|
)
|
|
default_updates.update(updates)
|
|
args_d: dict = CHEAP_ARGS.copy()
|
|
tmp_dir = make_test_data_dir()
|
|
output_dir = tempfile.mkdtemp(prefix="output_")
|
|
|
|
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
|
|
model = distill_main(argparse.Namespace(**args_d))
|
|
if not check_contents:
|
|
return model
|
|
contents = os.listdir(output_dir)
|
|
ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt" # "val_avg_rouge2=0.0000-epoch=1.ckpt" # "epoch=1-val_avg_rouge2=0.0000.ckpt"
|
|
contents = {os.path.basename(p) for p in contents}
|
|
self.assertIn(ckpt_name, contents)
|
|
self.assertIn("metrics.pkl", contents)
|
|
self.assertIn("test_generations.txt", contents)
|
|
self.assertIn("val_generations_00001.txt", contents)
|
|
self.assertIn("val_results_00001.txt", contents)
|
|
self.assertIn("test_results.txt", contents)
|
|
|
|
metrics = pickle_load(Path(output_dir) / "metrics.pkl")
|
|
desired_n_evals = int(args_d["num_train_epochs"] * (1 / args_d["val_check_interval"]) + 1)
|
|
self.assertEqual(len(metrics["val"]), desired_n_evals)
|
|
self.assertEqual(len(metrics["train"]), 0) # doesn't get logged here
|
|
return model
|
|
|
|
|
|
class TestBartExamples(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
|
|
return cls
|
|
|
|
def test_bart_cnn_cli(self):
|
|
tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo"
|
|
output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo"
|
|
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
|
|
_dump_articles(tmp, articles)
|
|
testargs = ["run_eval.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"]
|
|
with patch.object(sys, "argv", testargs):
|
|
run_generate()
|
|
self.assertTrue(Path(output_file_name).exists())
|
|
os.remove(Path(output_file_name))
|
|
|
|
def test_t5_run_sum_cli(self):
|
|
args_d: dict = CHEAP_ARGS.copy()
|
|
|
|
tmp_dir = make_test_data_dir()
|
|
output_dir = tempfile.mkdtemp(prefix="output_")
|
|
args_d.update(
|
|
data_dir=tmp_dir,
|
|
model_name_or_path=T5_TINY,
|
|
tokenizer_name=None, # T5_TINY,
|
|
train_batch_size=2,
|
|
eval_batch_size=2,
|
|
gpus=0,
|
|
output_dir=output_dir,
|
|
do_predict=True,
|
|
)
|
|
assert "n_train" in args_d
|
|
args = argparse.Namespace(**args_d)
|
|
main(args)
|
|
|
|
def test_bart_summarization_dataset(self):
|
|
tmp_dir = Path(tempfile.gettempdir())
|
|
articles = [" Sam ate lunch today", "Sams lunch ingredients"]
|
|
summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
|
|
_dump_articles((tmp_dir / "train.source"), articles)
|
|
_dump_articles((tmp_dir / "train.target"), summaries)
|
|
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
|
|
max_len_source = max(len(tokenizer.encode(a)) for a in articles)
|
|
max_len_target = max(len(tokenizer.encode(a)) for a in summaries)
|
|
trunc_target = 4
|
|
train_dataset = SummarizationDataset(
|
|
tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
|
|
)
|
|
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
|
|
for batch in dataloader:
|
|
self.assertEqual(batch["attention_mask"].shape, batch["input_ids"].shape)
|
|
# show that articles were trimmed.
|
|
self.assertEqual(batch["input_ids"].shape[1], max_len_source)
|
|
self.assertGreater(20, batch["input_ids"].shape[1]) # trimmed significantly
|
|
|
|
# show that targets were truncated
|
|
self.assertEqual(batch["decoder_input_ids"].shape[1], trunc_target) # Truncated
|
|
self.assertGreater(max_len_target, trunc_target) # Truncated
|
|
|
|
|
|
def list_to_text_file(lst, path):
|
|
dest = Path(path)
|
|
dest.open("w+").writelines(lst)
|