transformers/tests/models/blip_2/test_modeling_blip_2.py
Juan Pizarro 7591ca5bc5
🚨 Add Blip2ForImageTextRetrieval (#29261)
* add Blip2ForImageTextRetrieval

* use one line and remove unnecessary space in tests

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use  value from the config, rather than hardcoded

* change order of params in Blip2QFormerModel.forward

* update docstring

* fix style

* update test_inference_opt

* move embeddings out of Blip2QFormerModel

* remove from_vision_qformer_configs

* remove autocast float16 in Blip2QFormerModel

* rename fiels into vision_projection,text_projection,use_image_text_matching_head

* use CLIPOutput for  Blip2ImageTextMatchingModelOutput

* remove past_key_values_length from Blip2TextEmbeddings

* fix small typo in the CLIPOutput docstring

* add Blip2ForImageTextRetrieval to Zero Shot Image Classification mapping

* update docstring and add require_torch_fp16

* rollback test_inference_opt

* use use_image_text_matching_head=True in convert

* skip test_model_get_set_embeddings

* fix create_rename_keys error on new itm fields

* revert to do  scale after dot product between "query" and "key"

* fix ValueError on convert script for blip2-opt-2.7b

* update org of paths to Salesforce

* add is_pipeline_test_to_skip for VisualQuestionAnsweringPipelineTests

* [run_slow] blip_2

* removed Blip2ForImageTextRetrieval from IGNORE_NON_AUTO_CONFIGURED

* fix docstring of Blip2ImageTextMatchingModelOutput

* [run_slow] blip_2

* fix multi-gpu tests

* [run_slow] blip_2

* [run_slow] blip_2

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-27 18:50:27 +01:00

1721 lines
67 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BLIP-2 model."""
import inspect
import tempfile
import unittest
import numpy as np
import requests
from transformers import CONFIG_MAPPING, Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
from transformers.testing_utils import (
require_torch,
require_torch_fp16,
require_torch_gpu,
require_torch_multi_accelerator,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
Blip2ForConditionalGeneration,
Blip2ForImageTextRetrieval,
Blip2Model,
Blip2TextModelWithProjection,
Blip2VisionModel,
Blip2VisionModelWithProjection,
)
if is_vision_available():
from PIL import Image
from transformers import Blip2Processor
class Blip2VisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return Blip2VisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Blip2VisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as BLIP-2's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Blip2VisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Blip2VisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Blip2VisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BLIP-2's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2VisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Blip2QFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
use_qformer_text_input=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
self.use_qformer_text_input = use_qformer_text_input
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return Blip2QFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
use_qformer_text_input=self.use_qformer_text_input,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class Blip2TextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class Blip2ForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2ForConditionalGenerationDecoderOnlyModelTester(self)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# this class is based on `T5ModelTester` found in tests/models/t5/test_modeling_t5.py
class Blip2TextModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=12,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return CONFIG_MAPPING["t5"](
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
# this model tester uses an encoder-decoder language model (T5)
class Blip2ModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
(
_,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, lm_labels
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, labels
):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
self.parent.assertEqual(
result.logits.shape,
(
self.vision_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.vocab_size,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
pixel_values,
decoder_input_ids,
decoder_attention_mask,
labels,
) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"labels": labels,
}
return config, inputs_dict
@require_torch
class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration, Blip2Model) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": Blip2Model,
"image-to-text": Blip2ForConditionalGeneration,
"visual-question-answering": Blip2ForConditionalGeneration,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "VisualQuestionAnsweringPipelineTests":
# Get `RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'`.
return True
return False
def setUp(self):
self.model_tester = Blip2ModelTester(self)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_cpu_offload(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_get_text_features(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = {
"input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
"attention_mask": torch.LongTensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(torch_device),
"decoder_input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
}
model = Blip2Model(config).to(torch_device)
model.eval()
text_features = model.get_text_features(**inputs_dict)
self.assertEqual(text_features[0].shape, (1, 10, config.text_config.vocab_size))
def test_get_image_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
image_features = model.get_image_features(**inputs_dict)
self.assertEqual(
image_features[0].shape,
(
self.model_tester.vision_model_tester.batch_size,
self.model_tester.vision_model_tester.seq_length,
config.vision_config.hidden_size,
),
)
def test_get_qformer_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
qformer_features = model.get_qformer_features(**inputs_dict)
self.assertEqual(
qformer_features[0].shape,
(self.model_tester.vision_model_tester.batch_size, 10, config.vision_config.hidden_size),
)
# override from common to deal with nested configurations (`vision_config`, `text_config` and `qformer_config`)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for key in ["vision_config", "qformer_config", "text_config"]:
setattr(configs_no_init, key, _config_zero_init(getattr(configs_no_init, key)))
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
class Blip2TextModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_model(self, config, input_ids, attention_mask):
model = Blip2TextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=attention_mask, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.vision_model_tester.batch_size, input_ids.shape[1], self.qformer_model_tester.hidden_size),
)
self.parent.assertEqual(
result.text_embeds.shape,
(
self.vision_model_tester.batch_size,
input_ids.shape[1],
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
input_ids,
attention_mask=attention_mask,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.text_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2TextModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2TextModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_ids", "attention_mask", "position_ids"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_gpu
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2TextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
_, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
self.assertEqual(
outputs.text_embeds.shape,
(
self.model_tester.qformer_model_tester.batch_size,
input_ids.shape[1],
model.config.image_text_hidden_size,
),
)
class Blip2VisionModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.num_attention_heads = self.vision_model_tester.num_attention_heads
self.seq_length = self.vision_model_tester.seq_length
self.hidden_size = self.vision_model_tester.hidden_size
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.vision_model_tester.batch_size,
self.vision_model_tester.seq_length,
self.qformer_model_tester.hidden_size,
),
)
self.parent.assertEqual(
result.image_embeds.shape,
(
self.vision_model_tester.batch_size,
config.vision_config.hidden_size,
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
pixel_values,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.image_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2VisionModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2VisionModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2VisionModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
@unittest.skip(reason="Blip2VisionModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_gpu
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2VisionModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "vision_projection"))
_, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
self.assertEqual(
outputs.image_embeds.shape,
(
self.model_tester.vision_model_tester.batch_size,
model.config.num_query_tokens,
model.config.image_text_hidden_size,
),
)
class Blip2TextRetrievalModelTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForImageTextRetrieval(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, use_image_text_matching_head=True)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, 2),
)
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, self.qformer_model_tester.batch_size),
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.qformer_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
@require_torch
class Blip2TextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForImageTextRetrieval,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextRetrievalModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2ForImageTextRetrieval does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "input_ids", "attention_mask"]
expected_arg_names.extend(
["use_image_text_matching_head"] if "use_image_text_matching_head" in arg_names else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
@require_torch_gpu
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2ForImageTextRetrieval.from_pretrained(model_name)
self.assertIsNotNone(model)
_, input_ids, attention_mask, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
use_image_text_matching_head=True,
)
self.assertEqual(outputs.logits_per_image.shape, (self.model_tester.qformer_model_tester.batch_size, 2))
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
)
self.assertEqual(
outputs.logits_per_image.shape,
(self.model_tester.vision_model_tester.batch_size, self.model_tester.qformer_model_tester.batch_size),
)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif name == "temp":
self.assertAlmostEqual(
param.data.item(),
0.07,
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class Blip2ModelIntegrationTest(unittest.TestCase):
def test_inference_opt(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118])
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
# max_length for BLIP includes prompt length from now on, use max_new_tokens
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[2, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118],
)
self.assertEqual(generated_text, "it's not a city, it's a beach")
def test_inference_interpolate_pos_encoding(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 8, 2335, 15, 5, 4105, 50118])
self.assertEqual(generated_text, "a woman and dog on the beach")
def test_inference_opt_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
# Test output (in this case, slightly different from greedy search)
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118])
self.assertEqual(predictions[1].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118])
def test_inference_t5(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[0, 3, 7, 152, 67, 839, 1],
)
self.assertEqual(generated_text, "san diego")
def test_inference_t5_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
# Test output (in this case, slightly different from greedy search)
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual(predictions[1].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
@require_torch_multi_accelerator
def test_inference_opt_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="balanced"
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118])
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[2, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118],
)
self.assertEqual(generated_text, "it's not a city, it's a beach")
@require_torch_multi_accelerator
def test_inference_t5_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
device_map = device_map = {
"query_tokens": 0,
"vision_model": 0,
"language_model": 1,
"language_projection": 0,
"qformer": 0,
}
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map=device_map
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[0, 3, 7, 152, 67, 839, 1],
)
self.assertEqual(generated_text, "san diego")
def test_expansion_in_processing(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
image = prepare_img()
prompt = "Question: which city is this? Answer:"
# Make sure we will go the legacy path by setting these args to None
processor.num_query_tokens = None
model.config.image_token_index = None
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Add args to the config to trigger new logic when inputs are expanded in processing file
processor.num_query_tokens = model.config.num_query_tokens
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
model.config.image_token_index = len(processor.tokenizer) - 1
model.resize_token_embeddings(processor.tokenizer.vocab_size, pad_to_multiple_of=64)
# Generate again with new inputs
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
self.assertTrue(generated_text_expanded == generated_text)
@require_torch_gpu
def test_inference_itm(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0238, 0.9762]])
self.assertTrue(torch.allclose(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3))
self.assertTrue(torch.allclose(out[0].cpu(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3))
@require_torch_gpu
@require_torch_fp16
def test_inference_itm_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0239, 0.9761]])
self.assertTrue(
torch.allclose(torch.nn.Softmax()(out_itm[0].cpu().float()), expected_scores, rtol=1e-3, atol=1e-3)
)
self.assertTrue(torch.allclose(out[0].cpu().float(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3))
@require_torch_gpu
@require_torch_fp16
def test_inference_vision_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2VisionModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out = model(**inputs)
# verify
expected_image_embeds = [
-0.093994140625,
-0.075927734375,
0.031890869140625,
0.053009033203125,
0.0352783203125,
-0.01190185546875,
]
self.assertTrue(np.allclose(out.image_embeds[0][0][:6].tolist(), expected_image_embeds, atol=1e-3))
@require_torch_gpu
@require_torch_fp16
def test_inference_text_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2TextModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
inputs = processor(text="a woman sitting on the beach with a dog", padding=True, return_tensors="pt").to(
torch_device
)
# forward pass
out = model(**inputs)
# verify
expected_text_embeds = [
-0.1082763671875,
0.053192138671875,
-0.02825927734375,
0.0169830322265625,
0.08648681640625,
-0.04656982421875,
]
self.assertTrue(np.allclose(out.text_embeds[0][0][:6].tolist(), expected_text_embeds, atol=1e-3))