mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 14:58:56 +06:00

* Remove "Model" suffix from Flax models to look more 🤗 Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Initial working (forward + backward) for Flax MLM training example. Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Simply code Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Addressing comments, using module and moving to LM task. Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Restore parameter name "module" wrongly renamed model. Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Restore correct output ordering... Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Actually commit the example 😅 Signed-off-by: Morgan Funtowicz <morgan@huggingface.co> * Add FlaxBertModelForMaskedLM after rebasing. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Make it possible to initialize the training from scratch Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Reuse flax linen example of cross entropy loss Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Added specific data collator for flax Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Remove todo for data collator Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Added evaluation step Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Added ability to provide dtype to support bfloat16 on TPU Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Enable flax tensorboard output Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Enable jax.pmap support. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Ensure batches are correctly sized to be dispatched with jax.pmap Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Enable bfloat16 with --fp16 cmdline args Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Correctly export metrics to tensorboard Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Added dropout and ability to use it. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Effectively enable & disable during training and evaluation steps. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Oops. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Enable specifying kernel initializer scale Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Style. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Added warmup step to the learning rate scheduler. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Fix typo. Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Print training loss Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Make style Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * fix linter issue (flake8) Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Fix model matching Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Fix dummies Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Fix non default dtype on Flax models Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Use the same create_position_ids_from_input_ids for FlaxRoberta Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Make Roberta attention as Bert Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * fix copy Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com> * Wording. Co-authored-by: Marc van Zee <marcvanzee@gmail.com> Co-authored-by: Marc van Zee <marcvanzee@gmail.com>
84 lines
3.4 KiB
Python
84 lines
3.4 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from numpy import ndarray
|
|
|
|
from transformers import RobertaTokenizerFast, TensorType, is_flax_available, is_torch_available
|
|
from transformers.testing_utils import require_flax, require_torch
|
|
|
|
|
|
if is_flax_available():
|
|
import os
|
|
|
|
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
|
|
|
|
import jax
|
|
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.roberta.modeling_roberta import RobertaModel
|
|
|
|
|
|
@require_flax
|
|
@require_torch
|
|
class FlaxRobertaModelTest(unittest.TestCase):
|
|
def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float):
|
|
diff = (a - b).sum()
|
|
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol})")
|
|
|
|
def test_from_pytorch(self):
|
|
with torch.no_grad():
|
|
with self.subTest("roberta-base"):
|
|
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
|
fx_model = FlaxRobertaModel.from_pretrained("roberta-base")
|
|
pt_model = RobertaModel.from_pretrained("roberta-base")
|
|
|
|
# Check for simple input
|
|
pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH)
|
|
fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX)
|
|
pt_outputs = pt_model(**pt_inputs)
|
|
fx_outputs = fx_model(**fx_inputs)
|
|
|
|
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
|
|
|
for fx_output, pt_output in zip(fx_outputs, pt_outputs.to_tuple()):
|
|
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-3)
|
|
|
|
def test_multiple_sequences(self):
|
|
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
|
model = FlaxRobertaModel.from_pretrained("roberta-base")
|
|
|
|
sequences = ["this is an example sentence", "this is another", "and a third one"]
|
|
encodings = tokenizer(sequences, return_tensors=TensorType.JAX, padding=True, truncation=True)
|
|
|
|
@jax.jit
|
|
def model_jitted(input_ids, attention_mask=None, token_type_ids=None):
|
|
return model(input_ids, attention_mask, token_type_ids)
|
|
|
|
with self.subTest("JIT Disabled"):
|
|
with jax.disable_jit():
|
|
tokens, pooled = model_jitted(**encodings)
|
|
self.assertEqual(tokens.shape, (3, 7, 768))
|
|
self.assertEqual(pooled.shape, (3, 768))
|
|
|
|
with self.subTest("JIT Enabled"):
|
|
jitted_tokens, jitted_pooled = model_jitted(**encodings)
|
|
|
|
self.assertEqual(jitted_tokens.shape, (3, 7, 768))
|
|
self.assertEqual(jitted_pooled.shape, (3, 768))
|