transformers/docs/source/model_doc/ctrl.rst
2020-01-23 09:38:45 -05:00

58 lines
1.6 KiB
ReStructuredText

CTRL
----------------------------------------------------
CTRL model was proposed in `CTRL: A Conditional Transformer Language Model for Controllable Generation`_
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
Note: if you fine-tune a CTRL model using the Salesforce code (https://github.com/salesforce/ctrl),
you'll be able to convert from TF to our HuggingFace/Transformers format using the
``convert_tf_to_huggingface_pytorch.py`` script (see `issue #1654 <https://github.com/huggingface/transformers/issues/1654>`_).
``CTRLConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLConfig
:members:
``CTRLTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLTokenizer
:members:
``CTRLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLModel
:members:
``CTRLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLLMHeadModel
:members:
``TFCTRLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFCTRLModel
:members:
``TFCTRLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFCTRLLMHeadModel
:members: