mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

Please review @thomwolf but i think this is equivqlent (and it mimics the loss computation of the original loss)
508 lines
22 KiB
Python
508 lines
22 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Common utility functions related to TensorFlow."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import json
|
|
import math
|
|
import six
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
def gelu(x):
|
|
return 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
# OpenAI GPT gelu version was : 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
|
|
|
|
class BertConfig(object):
|
|
"""Configuration for `BertModel`."""
|
|
|
|
def __init__(self,
|
|
vocab_size,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
intermediate_size=3072,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
initializer_range=0.02):
|
|
"""Constructs BertConfig.
|
|
|
|
Args:
|
|
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
|
|
hidden_size: Size of the encoder layers and the pooler layer.
|
|
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
|
layer in the Transformer encoder.
|
|
hidden_act: The non-linear activation function (function or string) in the
|
|
encoder and pooler.
|
|
hidden_dropout_prob: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob: The dropout ratio for the attention
|
|
probabilities.
|
|
max_position_embeddings: The maximum sequence length that this model might
|
|
ever be used with. Typically set this to something large just in case
|
|
(e.g., 512 or 1024 or 2048).
|
|
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
|
`BertModel`.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_act = hidden_act
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.initializer_range = initializer_range
|
|
|
|
@classmethod
|
|
def from_dict(cls, json_object):
|
|
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
|
|
config = BertConfig(vocab_size=None)
|
|
for (key, value) in six.iteritems(json_object):
|
|
config.__dict__[key] = value
|
|
return config
|
|
|
|
@classmethod
|
|
def from_json_file(cls, json_file):
|
|
"""Constructs a `BertConfig` from a json file of parameters."""
|
|
with open(json_file, "r") as reader:
|
|
text = reader.read()
|
|
return cls.from_dict(json.loads(text))
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
|
|
class BERTLayerNorm(nn.Module):
|
|
def __init__(self, config, variance_epsilon=1e-12):
|
|
"Construct a layernorm module in the TF style (epsilon inside the square root)."
|
|
super(BERTLayerNorm, self).__init__()
|
|
self.gamma = nn.Parameter(torch.ones(config.hidden_size))
|
|
self.beta = nn.Parameter(torch.zeros(config.hidden_size))
|
|
self.variance_epsilon = variance_epsilon
|
|
|
|
def forward(self, x):
|
|
# TODO check it's identical to TF implementation in details (epsilon and axes)
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.gamma * x + self.beta
|
|
# tf.contrib.layers.layer_norm(
|
|
# inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
|
|
|
|
class BERTEmbeddings(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTEmbeddings, self).__init__()
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
# Position embeddings are (normally) a contiguous range so we could use a slice
|
|
# Since the position embedding table is a learned variable, we create it
|
|
# using a (long) sequence length `max_position_embeddings`. The actual
|
|
# sequence length might be shorter than this, for faster training of
|
|
# tasks that do not have long sequences.
|
|
#
|
|
# So `full_position_embeddings` is effectively an embedding table
|
|
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
|
|
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
|
|
# perform a slice.
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
|
|
|
# token_type_embeddings vocabulary is very small. TF used one-hot embeddings to speedup.
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
|
|
|
self.LayerNorm = BERTLayerNorm(config) # Not snake-cased to stick with TF model variable name
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, input_ids, token_type_ids=None):
|
|
seq_length = input_ids.size(1)
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros_like(input_ids)
|
|
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
|
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
|
embeddings = self.LayerNorm(embeddings)
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
|
|
class BERTSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTSelfAttention, self).__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x, is_key_tensor=False):
|
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
|
x = x.view(*new_x_shape)
|
|
if is_key_tensor:
|
|
return x.permute(0, 2, 3, 1)
|
|
else:
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
# Scalar dimensions referenced here:
|
|
# B = batch size (number of sequences)
|
|
# F = `from_tensor` sequence length
|
|
# T = `to_tensor` sequence length
|
|
# N = `num_attention_heads`
|
|
# H = `size_per_head`
|
|
query_layer = self.query(hidden_states)
|
|
key_layer = self.key(hidden_states)
|
|
value_layer = self.value(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(query_layer)
|
|
key_layer = self.transpose_for_scores(key_layer, is_key_tensor=True)
|
|
value_layer = self.transpose_for_scores(value_layer)
|
|
|
|
# Take the dot product between "query" and "key" to get the raw
|
|
# attention scores.
|
|
# `attention_scores` = [B, N, F, T]
|
|
attention_scores = torch.matmul(query_layer, key_layer)
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
|
|
|
# TODO clean up this (precompute)
|
|
# MY PYTORCH: w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights
|
|
# `attention_mask` = [B, 1, F, T]
|
|
# attention_mask = tf.expand_dims(attention_mask, axis=[1])
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
# positions we want to attend and -10000.0 for masked positions.
|
|
# adder = (1.0 - attention_mask) * -10000.0
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
# effectively the same as removing these entirely.
|
|
attention_scores += attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
# `attention_probs` = [B, N, F, T]
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
return context_layer
|
|
|
|
|
|
class BERTSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTSelfOutput, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = BERTLayerNorm(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(input_tensor)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class BERTAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTAttention, self).__init__()
|
|
self.self = BERTSelfAttention(config)
|
|
self.output = BERTSelfOutput(config)
|
|
|
|
def forward(self, input_tensor, attention_mask):
|
|
attention_output = self.self(input_tensor, attention_mask)
|
|
attention_output = self.output(attention_output, input_tensor)
|
|
return attention_output
|
|
|
|
|
|
class BERTIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTIntermediate, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.intermediate_act_fn = gelu
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class BERTOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTOutput, self).__init__()
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.LayerNorm = BERTLayerNorm(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class BERTLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTLayer, self).__init__()
|
|
self.attention = BERTAttention(config)
|
|
self.intermediate = BERTIntermediate(config)
|
|
self.output = BERTOutput(config)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
attention_output = self.attention(hidden_states, attention_mask)
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
|
|
class BERTEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTEncoder, self).__init__()
|
|
layer = BERTLayer(config)
|
|
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
"""
|
|
Args:
|
|
hidden_states: float Tensor of shape [batch_size, seq_length, hidden_size]
|
|
Return:
|
|
float Tensor of shape [batch_size, seq_length, hidden_size]
|
|
"""
|
|
all_encoder_layers = []
|
|
for layer_module in self.layer:
|
|
hidden_states = layer_module(hidden_states, attention_mask)
|
|
all_encoder_layers.append(hidden_states)
|
|
return all_encoder_layers
|
|
|
|
|
|
class BERTPooler(nn.Module):
|
|
def __init__(self, config):
|
|
super(BERTPooler, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.activation = nn.Tanh()
|
|
|
|
def forward(self, hidden_states):
|
|
"""
|
|
Args:
|
|
hidden_states: float Tensor of shape [batch_size, seq_length, hidden_size]
|
|
Return:
|
|
float Tensor of shape [batch_size, hidden_size]
|
|
"""
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token. We assume that this has been pre-trained
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
|
|
class BertModel(nn.Module):
|
|
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
|
|
|
|
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
|
|
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
|
|
|
|
model = modeling.BertModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config: BertConfig):
|
|
"""Constructor for BertModel.
|
|
|
|
Args:
|
|
config: `BertConfig` instance.
|
|
|
|
Raises:
|
|
ValueError: The config is invalid or one of the input tensor shapes
|
|
is invalid.
|
|
"""
|
|
super(BertModel, self).__init__()
|
|
self.embeddings = BERTEmbeddings(config)
|
|
self.encoder = BERTEncoder(config)
|
|
self.pooler = BERTPooler(config)
|
|
|
|
def forward(self, input_ids, token_type_ids=None, attention_mask=None):
|
|
# We create 3D attention mask from a 2D tensor mask.
|
|
# Sizes are [batch_size, 1, 1, from_seq_length]
|
|
# So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length]
|
|
# It's more simple than the triangular masking of causal attention, just need to
|
|
# prepare the broadcast here
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones_like(input_ids)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros_like(input_ids)
|
|
|
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
attention_mask = (1.0 - attention_mask) * -10000.0
|
|
|
|
embedding_output = self.embeddings(input_ids, token_type_ids)
|
|
all_encoder_layers = self.encoder(embedding_output, attention_mask)
|
|
sequence_output = all_encoder_layers[-1]
|
|
pooled_output = self.pooler(sequence_output)
|
|
return all_encoder_layers, pooled_output
|
|
|
|
class BertForSequenceClassification(nn.Module):
|
|
"""BERT model for classification.
|
|
This module is composed of the BERT model with a linear layer on top of
|
|
the pooled output.
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
|
|
|
|
config = BertConfig(vocab_size=32000, hidden_size=512,
|
|
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
|
|
|
|
num_labels = 2
|
|
|
|
model = BertForSequenceClassification(config, num_labels)
|
|
logits = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config, num_labels):
|
|
super(BertForSequenceClassification, self).__init__()
|
|
self.bert = BertModel(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = nn.Linear(config.hidden_size, num_labels)
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, (nn.Linear, nn.Embedding)):
|
|
print("Initializing {}".format(m))
|
|
# Slight difference here with the TF version which uses truncated_normal
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
m.weight.data.normal_(config.initializer_range)
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
|
|
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits, labels)
|
|
return loss, logits
|
|
else:
|
|
return logits
|
|
|
|
class BertForQuestionAnswering(nn.Module):
|
|
"""BERT model for Question Answering (span extraction).
|
|
This module is composed of the BERT model with a linear layer on top of
|
|
the sequence output that computes start_logits and end_logits
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
|
|
|
|
config = BertConfig(vocab_size=32000, hidden_size=512,
|
|
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
|
|
|
|
model = BertForQuestionAnswering(config)
|
|
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config):
|
|
super(BertForQuestionAnswering, self).__init__()
|
|
self.bert = BertModel(config)
|
|
# TODO check if it's normal there is no dropout on SQuAD in the TF version
|
|
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, (nn.Linear, nn.Embedding)):
|
|
print("Initializing {}".format(m))
|
|
# Slight difference here with the TF version which uses truncated_normal
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
m.weight.data.normal_(config.initializer_range)
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
|
|
all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
|
|
sequence_output = all_encoder_layers[-1]
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
|
|
if start_positions is not None and end_positions is not None:
|
|
#loss_fct = CrossEntropyLoss()
|
|
#start_loss = loss_fct(start_logits, start_positions)
|
|
#end_loss = loss_fct(end_logits, end_positions)
|
|
batch_size, seq_length = input_ids.size()
|
|
|
|
def compute_loss(logits, positions):
|
|
max_position = positions.max().item()
|
|
one_hot = torch.FloatTensor(batch_size, max(max_position, seq_length) +1).zero_()
|
|
one_hot = one_hot.scatter(1, positions.cpu(), 1) # Second argument need to be LongTensor and not cuda.LongTensor
|
|
one_hot = one_hot[:, :seq_length].to(input_ids.device)
|
|
log_probs = nn.functional.log_softmax(logits, dim = -1).view(batch_size, seq_length)
|
|
loss = -torch.mean(torch.sum(one_hot*log_probs), dim = -1)
|
|
return loss
|
|
|
|
start_loss = compute_loss(start_logits, start_positions)
|
|
end_loss = compute_loss(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
return total_loss, (start_logits, end_logits)
|
|
else:
|
|
return start_logits, end_logits
|