mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* Fix typos and grammar mistakes in docs and examples * Fix typos in docstrings and comments * Fix spelling of `tokenizer` in model tests * Remove erroneous spaces in decorators * Remove extra spaces in Markdown link texts
187 lines
9.1 KiB
Python
187 lines
9.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""M-CTC-T model configuration"""
|
|
|
|
from ....configuration_utils import PretrainedConfig
|
|
from ....utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json",
|
|
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
|
|
}
|
|
|
|
|
|
class MCTCTConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an
|
|
M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the M-CTC-T
|
|
[speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 8065):
|
|
Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`MCTCTModel`].
|
|
hidden_size (`int`, *optional*, defaults to 1536):
|
|
Dimension of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 36):
|
|
Number of hidden layers in the Transformer encoder.
|
|
intermediate_size (`int`, *optional*, defaults to 6144):
|
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 4):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
attention_head_dim (`int`, *optional*, defaults to 384):
|
|
Dimensions of each attention head for each attention layer in the Transformer encoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 920):
|
|
The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction).
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
layerdrop (`float`, *optional*, defaults to 0.3):
|
|
The probability of dropping an encoder layer during training. The default 0.3 value is used in the original
|
|
implementation.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.3):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3):
|
|
The dropout ratio for the attention probabilities.
|
|
pad_token_id (`int`, *optional*, defaults to 1):
|
|
The tokenizer index of the pad token.
|
|
bos_token_id (`int`, *optional*, defaults to 0):
|
|
The tokenizer index of the bos token.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The tokenizer index of the eos token.
|
|
conv_glu_dim (`int`, *optional*, defaults to 1):
|
|
The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original
|
|
Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences.
|
|
conv_dropout (`int`, *optional*, defaults to 0.3):
|
|
The probability of randomly dropping the `Conv1dSubsampler` layer during training.
|
|
num_conv_layers (`int`, *optional*, defaults to 1):
|
|
Number of convolution layers before applying transformer encoder layers.
|
|
conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`):
|
|
The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal
|
|
to `num_conv_layers`.
|
|
conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`):
|
|
The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal
|
|
to `num_conv_layers`.
|
|
input_feat_per_channel (`int`, *optional*, defaults to 80):
|
|
Feature dimensions of the channels of the input to the Conv1D layer.
|
|
input_channels (`int`, *optional*, defaults to 1):
|
|
Number of input channels of the input to the Conv1D layer.
|
|
conv_channels (`List[int]`, *optional*):
|
|
Channel sizes of intermediate Conv1D layers.
|
|
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
|
|
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
|
|
instance of [`MCTCTForCTC`].
|
|
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
|
|
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
|
|
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
|
|
of [`MCTCTForCTC`].
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import MCTCTConfig, MCTCTModel
|
|
|
|
>>> # Initializing a M-CTC-T mctct-large style configuration
|
|
>>> configuration = MCTCTConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the mctct-large style configuration
|
|
>>> model = MCTCTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "mctct"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=8065,
|
|
hidden_size=1536,
|
|
num_hidden_layers=36,
|
|
intermediate_size=6144,
|
|
num_attention_heads=4,
|
|
attention_head_dim=384,
|
|
max_position_embeddings=920,
|
|
layer_norm_eps=1e-5,
|
|
layerdrop=0.3,
|
|
hidden_act="relu",
|
|
initializer_range=0.02,
|
|
hidden_dropout_prob=0.3,
|
|
attention_probs_dropout_prob=0.3,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
conv_glu_dim=1,
|
|
conv_dropout=0.3,
|
|
num_conv_layers=1,
|
|
conv_kernel=(7,),
|
|
conv_stride=(3,),
|
|
input_feat_per_channel=80,
|
|
input_channels=1,
|
|
conv_channels=None,
|
|
ctc_loss_reduction="sum",
|
|
ctc_zero_infinity=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.intermediate_size = intermediate_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.layerdrop = layerdrop
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.conv_glu_dim = conv_glu_dim
|
|
self.conv_dropout = conv_dropout
|
|
self.num_conv_layers = num_conv_layers
|
|
self.input_feat_per_channel = input_feat_per_channel
|
|
self.input_channels = input_channels
|
|
self.conv_channels = conv_channels
|
|
self.ctc_loss_reduction = ctc_loss_reduction
|
|
self.ctc_zero_infinity = ctc_zero_infinity
|
|
|
|
# prevents config testing fail with exporting to json
|
|
self.conv_kernel = list(conv_kernel)
|
|
self.conv_stride = list(conv_stride)
|
|
|
|
if len(self.conv_kernel) != self.num_conv_layers:
|
|
raise ValueError(
|
|
"Configuration for convolutional module is incorrect. "
|
|
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
|
|
f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, "
|
|
f"`config.num_conv_layers = {self.num_conv_layers}`."
|
|
)
|