mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Add multimodal granite support Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> Support multiple image feature layres Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Remove failing validation for visual encoders with no cls Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Update llava based models / configs to support list of feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add tests for multiple feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use conditional instead of except for misaligned feature shapes Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> * crop cls from each hidden state Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> * Fix formatting Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Support single vision feature int in vipllava Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix typo in vision feature selection strategy validation Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> * Add tentative integration test for granite vision models Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> * Add granite vision docs Replace multimodal granite refs with granite vision Add granite vision / llava next alias Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> * Use image url in granitevision example Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com> --------- Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
567 lines
24 KiB
Python
567 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VideoLlava model."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
from parameterized import parameterized
|
|
|
|
from transformers import (
|
|
VideoLlavaConfig,
|
|
VideoLlavaForConditionalGeneration,
|
|
VideoLlavaProcessor,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
run_test_using_subprocess,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class VideoLlavaVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=0,
|
|
video_token_index=1,
|
|
projector_hidden_act="gelu",
|
|
seq_length=3,
|
|
num_frames=2,
|
|
vision_feature_select_strategy="default",
|
|
vision_feature_layer=-1,
|
|
text_config={
|
|
"model_type": "llama",
|
|
"seq_length": 13,
|
|
"is_training": True,
|
|
"use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"hidden_act": "gelu",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 2048, # we need it high because videos are 8 frames
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 3,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"model_type": "clip_vision_model",
|
|
"batch_size": 12,
|
|
"image_size": 8,
|
|
"patch_size": 6,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
self.image_token_index = image_token_index
|
|
self.video_token_index = video_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.num_frames = num_frames
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 5
|
|
self.num_channels = 3
|
|
self.image_size = 224
|
|
|
|
self.num_image_tokens = (vision_config["image_size"] // vision_config["patch_size"]) ** 2
|
|
self.num_video_tokens = (self.num_image_tokens + 1) * self.num_frames
|
|
self.seq_length = seq_length + self.num_image_tokens + self.num_video_tokens
|
|
|
|
def get_config(self):
|
|
return VideoLlavaConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
ignore_index=self.ignore_index,
|
|
image_token_index=self.image_token_index,
|
|
video_token_index=self.video_token_index,
|
|
projector_hidden_act=self.projector_hidden_act,
|
|
vision_feature_select_strategy=self.vision_feature_select_strategy,
|
|
vision_feature_layer=self.vision_feature_layer,
|
|
image_seq_length=self.num_image_tokens,
|
|
video_seq_length=self.num_video_tokens,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values_videos = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_frames,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
|
|
pixel_values_images = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values_images, pixel_values_videos
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values_images, pixel_values_videos = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
|
|
input_ids[(input_ids == config.image_token_index) | (input_ids == config.video_token_index)] = (
|
|
self.pad_token_id
|
|
)
|
|
input_ids[:, : self.num_image_tokens] = config.image_token_index
|
|
input_ids[:, self.num_image_tokens : self.num_video_tokens + self.num_image_tokens] = config.video_token_index
|
|
inputs_dict = {
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"pixel_values_images": pixel_values_images,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VideoLlavaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `VideoLlavaForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (VideoLlavaForConditionalGeneration,) if is_torch_available() else ()
|
|
all_generative_model_classes = (VideoLlavaForConditionalGeneration,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = VideoLlavaVisionText2TextModelTester(self)
|
|
common_properties = ["image_token_index", "video_token_index", "vision_feature_layer", "image_seq_length"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=VideoLlavaConfig, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Pass because video-LLava requires `attention_mask is not None`")
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Pass because video-LLava requires `attention_mask is not None`")
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
pass
|
|
|
|
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
|
|
def test_flash_attn_2_fp32_ln(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
|
|
)
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
pass
|
|
|
|
@run_test_using_subprocess
|
|
def test_mixed_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# test that the forward does not fail
|
|
with torch.no_grad():
|
|
_ = model(**inputs)
|
|
|
|
# if we remove some images from inputs leaving only one
|
|
# image number mismatch error should raise
|
|
inputs["pixel_values_images"] = inputs["pixel_values_images"][:1]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
def test_video_only_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# replace image token id with dummy id
|
|
# Error will be raised as num-image-tokens and num-of-image-embeds mismatch
|
|
inputs["input_ids"][:, : self.model_tester.num_image_tokens] = 2
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
inputs["pixel_values_images"] = None
|
|
_ = model(**inputs)
|
|
|
|
def test_image_only_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# set dummy id, which is not video token id
|
|
# Error will be raised as num-video-tokens and num-of-video-embeds mismatch
|
|
inputs["input_ids"][
|
|
:,
|
|
self.model_tester.num_image_tokens : self.model_tester.num_image_tokens
|
|
+ self.model_tester.num_video_tokens,
|
|
] = 2
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
inputs["pixel_values_videos"] = None
|
|
_ = model(**inputs)
|
|
|
|
def test_batching_equivalence(self):
|
|
def recursive_check(batched_object, single_row_object, model_name, key):
|
|
if isinstance(batched_object, (list, tuple)):
|
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
|
|
return
|
|
elif batched_object.dim() == 0:
|
|
return
|
|
else:
|
|
batched_row = batched_object[:1]
|
|
self.assertFalse(
|
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertTrue(
|
|
(torch.max(torch.abs(batched_row - single_row_object))) <= 1e-03,
|
|
msg=(
|
|
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
|
|
f"Difference={torch.max(torch.abs(batched_row - single_row_object))}."
|
|
),
|
|
)
|
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
|
|
model_name = model_class.__name__
|
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
single_row_input = {}
|
|
for key, value in batched_input_prepared.items():
|
|
single_row_input[key] = value[:1]
|
|
|
|
with torch.no_grad():
|
|
model_batched_output = model(**batched_input_prepared)
|
|
model_row_output = model(**single_row_input)
|
|
|
|
for key in model_batched_output:
|
|
# we can't test videos as their output shapes are linked to number of frames
|
|
# and we don't have to as it is a CLIP model and can be tested from `ClipModelTester` class
|
|
if key == "video_hidden_states":
|
|
continue
|
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values_images"]
|
|
del inputs["pixel_values_videos"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values_images"]
|
|
del inputs["pixel_values_videos"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
self.assertTrue(torch.allclose(out_embeds, out_ids))
|
|
|
|
def test_mismatching_num_image_tokens(self):
|
|
"""
|
|
Tests that VLMs through an error with explicit message saying what is wrong
|
|
when number of images don't match number of image tokens in the text.
|
|
Also we need to test multi-image cases when one prompr has multiple image tokens.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
_ = model(**input_dict) # successfull forward with no modifications
|
|
|
|
# remove one image but leave the image token in text
|
|
input_dict["pixel_values_images"] = input_dict["pixel_values_images"][-1:, ...]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**input_dict)
|
|
|
|
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
|
|
input_ids = input_dict["input_ids"][:1]
|
|
pixel_values = input_dict["pixel_values_images"][:1]
|
|
input_ids = torch.cat([input_ids, input_ids], dim=0)
|
|
|
|
# one image and two image tokens raise an error
|
|
with self.assertRaises(ValueError):
|
|
_ = model(input_ids=input_ids, pixel_values_images=pixel_values)
|
|
|
|
# two images and two image tokens don't raise an error
|
|
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
|
|
_ = model(input_ids=input_ids, pixel_values_images=pixel_values)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
(-1,),
|
|
([-1],),
|
|
([-1, -2],),
|
|
],
|
|
)
|
|
def test_vision_feature_layers(self, vision_feature_layer):
|
|
"""
|
|
Test that we can use either one vision feature layer, or a list of
|
|
vision feature layers.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.vision_feature_layer = vision_feature_layer
|
|
|
|
num_feature_layers = 1 if isinstance(vision_feature_layer, int) else len(vision_feature_layer)
|
|
hidden_size = config.vision_config.hidden_size
|
|
expected_features = hidden_size * num_feature_layers
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
# We should have the right number of input features,
|
|
# and should be able to run a forward pass without exploding
|
|
assert model.multi_modal_projector.linear_1.in_features == expected_features
|
|
model(**input_dict)
|
|
|
|
|
|
@require_torch
|
|
class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
|
|
prompt = "USER: <video>\nWhy is this video funny? ASSISTANT:"
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device)
|
|
|
|
EXPECTED_INPUT_IDS = torch.tensor([1, 3148, 1001, 29901, 29871, 13, 11008, 338, 445, 4863, 2090, 1460, 29973, 319, 1799, 9047, 13566, 29901], device=torch_device) # fmt: skip
|
|
non_video_inputs = inputs["input_ids"][inputs["input_ids"] != 32001]
|
|
self.assertTrue(torch.equal(non_video_inputs, EXPECTED_INPUT_IDS))
|
|
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "USER: \nWhy is this video funny? ASSISTANT: The video is funny because it shows a baby sitting on a bed and reading a book, which" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_mixed_inputs(self):
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
|
|
prompts = [
|
|
"USER: <image>\nWhat are the cats in the image doing? ASSISTANT:",
|
|
"USER: <video>\nWhy is this video funny? ASSISTANT:",
|
|
]
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
inputs = self.processor(prompts, images=[image], videos=[video_file], padding=True, return_tensors="pt").to(
|
|
torch_device
|
|
)
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = [
|
|
'USER: \nWhat are the cats in the image doing? ASSISTANT: The cats in the image are sleeping or resting on a couch.',
|
|
'USER: \nWhy is this video funny? ASSISTANT: The video is funny because it shows a baby sitting on a bed and reading a book, which'
|
|
] # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.batch_decode(output, skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_llama(self):
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
|
|
prompt = "USER: <video>\nDescribe the video in details. ASSISTANT:"
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
|
|
EXPECTED_DECODED_TEXT = "USER: \nDescribe the video in details. ASSISTANT: The video features a young child sitting on a bed, holding a book and reading it. " \
|
|
"The child appears to be enjoying the book, as they are fully engaged in the activity. The bed is located in a bedroom, and there is a chair nearby. The " \
|
|
"child is wearing a blue shirt and glasses, which suggests that they might have a visual impairment. The room is well-lit, and there is a clock on the wall, " \
|
|
"indicating the time. The child's focus on the book indicates that they are interested in the content and are actively participating in the reading process. " \
|
|
"Overall, the video captures a heartwarming moment of a child engaging in a simple yet essential activity, which is reading." # fmt: skip
|
|
|
|
self.assertEqual(
|
|
processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_llama_batched(self):
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
processor.tokenizer.padding_side = "left"
|
|
|
|
prompts = [
|
|
"USER: <video>\nWhat is the baby doing? ASSISTANT:",
|
|
"USER: <video>\nWho is sitting next to the woman? ASSISTANT:",
|
|
]
|
|
video_1 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset")
|
|
)
|
|
video_2 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo_2.npy", repo_type="dataset")
|
|
)
|
|
|
|
inputs = processor(prompts, videos=[video_1, video_2], return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = [
|
|
'USER: \nWhat is the baby doing? ASSISTANT: The baby is sitting on a bed and reading a book.',
|
|
'USER: \nWho is sitting next to the woman? ASSISTANT: A small dog is sitting next to the woman.'
|
|
] # fmt: skip
|
|
|
|
self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|