transformers/examples/summarization/bart/test_bart_examples.py
2020-04-07 19:05:58 -04:00

62 lines
2.6 KiB
Python

import logging
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch
from torch.utils.data import DataLoader
from transformers import BartTokenizer
from .evaluate_cnn import run_generate
from .utils import SummarizationDataset
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def _dump_articles(path: Path, articles: list):
with path.open("w") as f:
f.write("\n".join(articles))
class TestBartExamples(unittest.TestCase):
def test_bart_cnn_cli(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp = Path(tempfile.gettempdir()) / "utest_generations_bart_sum.hypo"
output_file_name = Path(tempfile.gettempdir()) / "utest_output_bart_sum.hypo"
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(tmp, articles)
testargs = ["evaluate_cnn.py", str(tmp), str(output_file_name), "sshleifer/bart-tiny-random"]
with patch.object(sys, "argv", testargs):
run_generate()
self.assertTrue(output_file_name.exists())
def test_bart_summarization_dataset(self):
tmp_dir = Path(tempfile.gettempdir())
articles = [" Sam ate lunch today", "Sams lunch ingredients"]
summaries = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
_dump_articles((tmp_dir / "train.source"), articles)
_dump_articles((tmp_dir / "train.target"), summaries)
tokenizer = BartTokenizer.from_pretrained("bart-large")
max_len_source = max(len(tokenizer.encode(a)) for a in articles)
max_len_target = max(len(tokenizer.encode(a)) for a in summaries)
trunc_target = 4
train_dataset = SummarizationDataset(
tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
)
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
for batch in dataloader:
self.assertEqual(batch["source_mask"].shape, batch["source_ids"].shape)
# show that articles were trimmed.
self.assertEqual(batch["source_ids"].shape[1], max_len_source)
self.assertGreater(20, batch["source_ids"].shape[1]) # trimmed significantly
# show that targets were truncated
self.assertEqual(batch["target_ids"].shape[1], trunc_target) # Truncated
self.assertGreater(max_len_target, trunc_target) # Truncated