transformers/utils/check_dummies.py
Julien Chaumond 70f622fab4
Model versioning (#8324)
* fix typo

* rm use_cdn & references, and implement new hf_bucket_url

* I'm pretty sure we don't need to `read` this file

* same here

* [BIG] file_utils.networking: do not gobble up errors anymore

* Fix CI 😇

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Tiny doc tweak

* Add doc + pass kwarg everywhere

* Add more tests and explain

cc @sshleifer let me know if better

Co-Authored-By: Sam Shleifer <sshleifer@gmail.com>

* Also implement revision in pipelines

In the case where we're passing a task name or a string model identifier

* Fix CI 😇

* Fix CI

* [hf_api] new methods + command line implem

* make style

* Final endpoints post-migration

* Fix post-migration

* Py3.6 compat

cc @stefan-it

Thank you @stas00

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
2020-11-10 07:11:02 -05:00

397 lines
13 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
PATH_TO_TRANSFORMERS = "src/transformers"
_re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
DUMMY_CONSTANT = """
{0} = None
"""
DUMMY_PT_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_FUNCTION = """
def {0}(*args, **kwargs):
requires_pytorch({0})
"""
DUMMY_TF_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_FUNCTION = """
def {0}(*args, **kwargs):
requires_tf({0})
"""
DUMMY_FLAX_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_flax(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_flax(self)
"""
DUMMY_FLAX_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_flax(self)
"""
DUMMY_FLAX_FUNCTION = """
def {0}(*args, **kwargs):
requires_flax({0})
"""
DUMMY_SENTENCEPIECE_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_sentencepiece(self)
"""
DUMMY_SENTENCEPIECE_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
"""
DUMMY_SENTENCEPIECE_FUNCTION = """
def {0}(*args, **kwargs):
requires_sentencepiece({0})
"""
DUMMY_TOKENIZERS_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tokenizers(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tokenizers(self)
"""
DUMMY_TOKENIZERS_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tokenizers(self)
"""
DUMMY_TOKENIZERS_FUNCTION = """
def {0}(*args, **kwargs):
requires_tokenizers({0})
"""
# Map all these to dummy type
DUMMY_PRETRAINED_CLASS = {
"pt": DUMMY_PT_PRETRAINED_CLASS,
"tf": DUMMY_TF_PRETRAINED_CLASS,
"flax": DUMMY_FLAX_PRETRAINED_CLASS,
"sentencepiece": DUMMY_SENTENCEPIECE_PRETRAINED_CLASS,
"tokenizers": DUMMY_TOKENIZERS_PRETRAINED_CLASS,
}
DUMMY_CLASS = {
"pt": DUMMY_PT_CLASS,
"tf": DUMMY_TF_CLASS,
"flax": DUMMY_FLAX_CLASS,
"sentencepiece": DUMMY_SENTENCEPIECE_CLASS,
"tokenizers": DUMMY_TOKENIZERS_CLASS,
}
DUMMY_FUNCTION = {
"pt": DUMMY_PT_FUNCTION,
"tf": DUMMY_TF_FUNCTION,
"flax": DUMMY_FLAX_FUNCTION,
"sentencepiece": DUMMY_SENTENCEPIECE_FUNCTION,
"tokenizers": DUMMY_TOKENIZERS_FUNCTION,
}
def read_init():
""" Read the init and extracts PyTorch, TensorFlow, SentencePiece and Tokenizers objects. """
with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r", encoding="utf-8") as f:
lines = f.readlines()
line_index = 0
# Find where the SentencePiece imports begin
sentencepiece_objects = []
while not lines[line_index].startswith("if is_sentencepiece_available():"):
line_index += 1
line_index += 1
# Until we unindent, add SentencePiece objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
sentencepiece_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
sentencepiece_objects.append(line[8:-2])
line_index += 1
# Find where the Tokenizers imports begin
tokenizers_objects = []
while not lines[line_index].startswith("if is_tokenizers_available():"):
line_index += 1
line_index += 1
# Until we unindent, add Tokenizers objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
tokenizers_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
tokenizers_objects.append(line[8:-2])
line_index += 1
# Find where the PyTorch imports begin
pt_objects = []
while not lines[line_index].startswith("if is_torch_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
pt_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
pt_objects.append(line[8:-2])
line_index += 1
# Find where the TF imports begin
tf_objects = []
while not lines[line_index].startswith("if is_tf_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
tf_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
tf_objects.append(line[8:-2])
line_index += 1
# Find where the FLAX imports begin
flax_objects = []
while not lines[line_index].startswith("if is_flax_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
flax_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
flax_objects.append(line[8:-2])
line_index += 1
return sentencepiece_objects, tokenizers_objects, pt_objects, tf_objects, flax_objects
def create_dummy_object(name, type="pt"):
""" Create the code for the dummy object corresponding to `name`."""
_pretrained = [
"Config" "ForCausalLM",
"ForConditionalGeneration",
"ForMaskedLM",
"ForMultipleChoice",
"ForQuestionAnswering",
"ForSequenceClassification",
"ForTokenClassification",
"Model",
"Tokenizer",
]
assert type in ["pt", "tf", "sentencepiece", "tokenizers", "flax"]
if name.isupper():
return DUMMY_CONSTANT.format(name)
elif name.islower():
return (DUMMY_FUNCTION[type]).format(name)
else:
is_pretrained = False
for part in _pretrained:
if part in name:
is_pretrained = True
break
if is_pretrained:
template = DUMMY_PRETRAINED_CLASS[type]
else:
template = DUMMY_CLASS[type]
return template.format(name)
def create_dummy_files():
""" Create the content of the dummy files. """
sentencepiece_objects, tokenizers_objects, pt_objects, tf_objects, flax_objects = read_init()
sentencepiece_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
sentencepiece_dummies += "from ..file_utils import requires_sentencepiece\n\n"
sentencepiece_dummies += "\n".join([create_dummy_object(o, type="sentencepiece") for o in sentencepiece_objects])
tokenizers_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
tokenizers_dummies += "from ..file_utils import requires_tokenizers\n\n"
tokenizers_dummies += "\n".join([create_dummy_object(o, type="tokenizers") for o in tokenizers_objects])
pt_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
pt_dummies += "from ..file_utils import requires_pytorch\n\n"
pt_dummies += "\n".join([create_dummy_object(o, type="pt") for o in pt_objects])
tf_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
tf_dummies += "from ..file_utils import requires_tf\n\n"
tf_dummies += "\n".join([create_dummy_object(o, type="tf") for o in tf_objects])
flax_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
flax_dummies += "from ..file_utils import requires_flax\n\n"
flax_dummies += "\n".join([create_dummy_object(o, type="flax") for o in flax_objects])
return sentencepiece_dummies, tokenizers_dummies, pt_dummies, tf_dummies, flax_dummies
def check_dummies(overwrite=False):
""" Check if the dummy files are up to date and maybe `overwrite` with the right content. """
sentencepiece_dummies, tokenizers_dummies, pt_dummies, tf_dummies, flax_dummies = create_dummy_files()
path = os.path.join(PATH_TO_TRANSFORMERS, "utils")
sentencepiece_file = os.path.join(path, "dummy_sentencepiece_objects.py")
tokenizers_file = os.path.join(path, "dummy_tokenizers_objects.py")
pt_file = os.path.join(path, "dummy_pt_objects.py")
tf_file = os.path.join(path, "dummy_tf_objects.py")
flax_file = os.path.join(path, "dummy_flax_objects.py")
with open(sentencepiece_file, "r", encoding="utf-8") as f:
actual_sentencepiece_dummies = f.read()
with open(tokenizers_file, "r", encoding="utf-8") as f:
actual_tokenizers_dummies = f.read()
with open(pt_file, "r", encoding="utf-8") as f:
actual_pt_dummies = f.read()
with open(tf_file, "r", encoding="utf-8") as f:
actual_tf_dummies = f.read()
with open(flax_file, "r", encoding="utf-8") as f:
actual_flax_dummies = f.read()
if sentencepiece_dummies != actual_sentencepiece_dummies:
if overwrite:
print("Updating transformers.utils.dummy_sentencepiece_objects.py as the main __init__ has new objects.")
with open(sentencepiece_file, "w", encoding="utf-8") as f:
f.write(sentencepiece_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_sentencepiece_objects.py.",
"Run `make fix-copies` to fix this.",
)
if tokenizers_dummies != actual_tokenizers_dummies:
if overwrite:
print("Updating transformers.utils.dummy_tokenizers_objects.py as the main __init__ has new objects.")
with open(tokenizers_file, "w", encoding="utf-8") as f:
f.write(tokenizers_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_tokenizers_objects.py.",
"Run `make fix-copies` to fix this.",
)
if pt_dummies != actual_pt_dummies:
if overwrite:
print("Updating transformers.utils.dummy_pt_objects.py as the main __init__ has new objects.")
with open(pt_file, "w", encoding="utf-8") as f:
f.write(pt_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
)
if tf_dummies != actual_tf_dummies:
if overwrite:
print("Updating transformers.utils.dummy_tf_objects.py as the main __init__ has new objects.")
with open(tf_file, "w", encoding="utf-8") as f:
f.write(tf_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
)
if flax_dummies != actual_flax_dummies:
if overwrite:
print("Updating transformers.utils.dummy_flax_objects.py as the main __init__ has new objects.")
with open(flax_file, "w", encoding="utf-8") as f:
f.write(flax_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_flax_objects.py.",
"Run `make fix-copies` to fix this.",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_dummies(args.fix_and_overwrite)