mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 17:48:22 +06:00

* Result of black 23.1 * Update target to Python 3.7 * Switch flake8 to ruff * Configure isort * Configure isort * Apply isort with line limit * Put the right black version * adapt black in check copies * Fix copies
936 lines
42 KiB
Python
936 lines
42 KiB
Python
# coding=utf-8
|
||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
""" Testing suite for the PyTorch BigBird model. """
|
||
|
||
|
||
import unittest
|
||
|
||
from transformers import BigBirdConfig, is_torch_available
|
||
from transformers.models.auto import get_values
|
||
from transformers.models.big_bird.tokenization_big_bird import BigBirdTokenizer
|
||
from transformers.testing_utils import require_torch, slow, torch_device
|
||
|
||
from ...test_configuration_common import ConfigTester
|
||
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
from transformers import (
|
||
MODEL_FOR_PRETRAINING_MAPPING,
|
||
BigBirdForCausalLM,
|
||
BigBirdForMaskedLM,
|
||
BigBirdForMultipleChoice,
|
||
BigBirdForPreTraining,
|
||
BigBirdForQuestionAnswering,
|
||
BigBirdForSequenceClassification,
|
||
BigBirdForTokenClassification,
|
||
BigBirdModel,
|
||
)
|
||
from transformers.models.big_bird.modeling_big_bird import BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST
|
||
|
||
|
||
class BigBirdModelTester:
|
||
def __init__(
|
||
self,
|
||
parent,
|
||
batch_size=7,
|
||
seq_length=128,
|
||
is_training=True,
|
||
use_input_mask=True,
|
||
use_token_type_ids=True,
|
||
use_labels=True,
|
||
vocab_size=99,
|
||
hidden_size=32,
|
||
num_hidden_layers=2,
|
||
num_attention_heads=4,
|
||
intermediate_size=37,
|
||
hidden_act="gelu_new",
|
||
hidden_dropout_prob=0.1,
|
||
attention_probs_dropout_prob=0.1,
|
||
max_position_embeddings=256,
|
||
type_vocab_size=16,
|
||
type_sequence_label_size=2,
|
||
initializer_range=0.02,
|
||
num_labels=3,
|
||
num_choices=4,
|
||
attention_type="block_sparse",
|
||
use_bias=True,
|
||
rescale_embeddings=False,
|
||
block_size=8,
|
||
num_rand_blocks=3,
|
||
position_embedding_type="absolute",
|
||
scope=None,
|
||
):
|
||
self.parent = parent
|
||
self.batch_size = batch_size
|
||
self.seq_length = seq_length
|
||
self.is_training = is_training
|
||
self.use_input_mask = use_input_mask
|
||
self.use_token_type_ids = use_token_type_ids
|
||
self.use_labels = use_labels
|
||
self.vocab_size = vocab_size
|
||
self.hidden_size = hidden_size
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
self.intermediate_size = intermediate_size
|
||
self.hidden_act = hidden_act
|
||
self.hidden_dropout_prob = hidden_dropout_prob
|
||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.type_vocab_size = type_vocab_size
|
||
self.type_sequence_label_size = type_sequence_label_size
|
||
self.initializer_range = initializer_range
|
||
self.num_labels = num_labels
|
||
self.num_choices = num_choices
|
||
self.scope = scope
|
||
|
||
self.attention_type = attention_type
|
||
self.use_bias = use_bias
|
||
self.rescale_embeddings = rescale_embeddings
|
||
self.block_size = block_size
|
||
self.num_rand_blocks = num_rand_blocks
|
||
self.position_embedding_type = position_embedding_type
|
||
|
||
def prepare_config_and_inputs(self):
|
||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||
|
||
input_mask = None
|
||
if self.use_input_mask:
|
||
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||
|
||
token_type_ids = None
|
||
if self.use_token_type_ids:
|
||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||
|
||
sequence_labels = None
|
||
token_labels = None
|
||
choice_labels = None
|
||
if self.use_labels:
|
||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||
|
||
config = self.get_config()
|
||
|
||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
|
||
def get_config(self):
|
||
return BigBirdConfig(
|
||
vocab_size=self.vocab_size,
|
||
hidden_size=self.hidden_size,
|
||
num_hidden_layers=self.num_hidden_layers,
|
||
num_attention_heads=self.num_attention_heads,
|
||
intermediate_size=self.intermediate_size,
|
||
hidden_act=self.hidden_act,
|
||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
type_vocab_size=self.type_vocab_size,
|
||
is_encoder_decoder=False,
|
||
initializer_range=self.initializer_range,
|
||
attention_type=self.attention_type,
|
||
use_bias=self.use_bias,
|
||
rescale_embeddings=self.rescale_embeddings,
|
||
block_size=self.block_size,
|
||
num_random_blocks=self.num_rand_blocks,
|
||
position_embedding_type=self.position_embedding_type,
|
||
)
|
||
|
||
def prepare_config_and_inputs_for_decoder(self):
|
||
(
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = self.prepare_config_and_inputs()
|
||
|
||
config.is_decoder = True
|
||
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
||
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||
|
||
return (
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
)
|
||
|
||
def create_and_check_model(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
model = BigBirdModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||
result = model(input_ids, token_type_ids=token_type_ids)
|
||
result = model(input_ids)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
|
||
def create_and_check_for_pretraining(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
model = BigBirdForPreTraining(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
token_type_ids=token_type_ids,
|
||
labels=token_labels,
|
||
next_sentence_label=sequence_labels,
|
||
)
|
||
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, config.num_labels))
|
||
|
||
def create_and_check_model_as_decoder(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
config.add_cross_attention = True
|
||
model = BigBirdModel(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
token_type_ids=token_type_ids,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
)
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
token_type_ids=token_type_ids,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
)
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
|
||
def create_and_check_for_causal_lm(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
model = BigBirdForCausalLM(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
|
||
def create_and_check_for_masked_lm(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
model = BigBirdForMaskedLM(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
|
||
def create_and_check_decoder_model_past_large_inputs(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
config.is_decoder = True
|
||
config.add_cross_attention = True
|
||
model = BigBirdForCausalLM(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
use_cache=True,
|
||
)
|
||
past_key_values = outputs.past_key_values
|
||
|
||
# create hypothetical multiple next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||
|
||
# append to next input_ids and
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||
|
||
output_from_no_past = model(
|
||
next_input_ids,
|
||
attention_mask=next_attention_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
output_hidden_states=True,
|
||
)["hidden_states"][0]
|
||
output_from_past = model(
|
||
next_tokens,
|
||
attention_mask=next_attention_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
past_key_values=past_key_values,
|
||
output_hidden_states=True,
|
||
)["hidden_states"][0]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
|
||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_for_question_answering(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
model = BigBirdForQuestionAnswering(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
token_type_ids=token_type_ids,
|
||
start_positions=sequence_labels,
|
||
end_positions=sequence_labels,
|
||
)
|
||
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
||
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
||
|
||
def create_and_check_for_sequence_classification(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
config.num_labels = self.num_labels
|
||
model = BigBirdForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||
|
||
def create_and_check_for_token_classification(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
config.num_labels = self.num_labels
|
||
model = BigBirdForTokenClassification(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||
|
||
def create_and_check_for_multiple_choice(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
config.num_choices = self.num_choices
|
||
model = BigBirdForMultipleChoice(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||
result = model(
|
||
multiple_choice_inputs_ids,
|
||
attention_mask=multiple_choice_input_mask,
|
||
token_type_ids=multiple_choice_token_type_ids,
|
||
labels=choice_labels,
|
||
)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
||
|
||
def prepare_config_and_inputs_for_common(self):
|
||
config_and_inputs = self.prepare_config_and_inputs()
|
||
(
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = config_and_inputs
|
||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
||
return config, inputs_dict
|
||
|
||
def create_and_check_for_auto_padding(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
):
|
||
model = BigBirdModel(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
|
||
def create_and_check_for_change_to_full_attn(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
):
|
||
model = BigBirdModel(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
# the config should not be changed
|
||
self.parent.assertTrue(model.config.attention_type == "block_sparse")
|
||
|
||
|
||
@require_torch
|
||
class BigBirdModelTest(ModelTesterMixin, unittest.TestCase):
|
||
# head masking & pruning is currently not supported for big bird
|
||
test_head_masking = False
|
||
test_pruning = False
|
||
|
||
# torchscript should be possible, but takes prohibitively long to test.
|
||
# Also torchscript is not an important feature to have in the beginning.
|
||
test_torchscript = False
|
||
|
||
all_model_classes = (
|
||
(
|
||
BigBirdModel,
|
||
BigBirdForPreTraining,
|
||
BigBirdForMaskedLM,
|
||
BigBirdForCausalLM,
|
||
BigBirdForMultipleChoice,
|
||
BigBirdForQuestionAnswering,
|
||
BigBirdForSequenceClassification,
|
||
BigBirdForTokenClassification,
|
||
)
|
||
if is_torch_available()
|
||
else ()
|
||
)
|
||
all_generative_model_classes = (BigBirdForCausalLM,) if is_torch_available() else ()
|
||
|
||
# special case for ForPreTraining model
|
||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
||
|
||
if return_labels:
|
||
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
|
||
inputs_dict["labels"] = torch.zeros(
|
||
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
||
)
|
||
inputs_dict["next_sentence_label"] = torch.zeros(
|
||
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
||
)
|
||
return inputs_dict
|
||
|
||
def setUp(self):
|
||
self.model_tester = BigBirdModelTester(self)
|
||
self.config_tester = ConfigTester(self, config_class=BigBirdConfig, hidden_size=37)
|
||
|
||
def test_config(self):
|
||
self.config_tester.run_common_tests()
|
||
|
||
def test_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||
|
||
def test_for_pretraining(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
||
|
||
def test_for_masked_lm(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
||
|
||
def test_for_multiple_choice(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|
||
|
||
def test_decoder_model_past_with_large_inputs(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
||
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
||
|
||
def test_for_question_answering(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
||
|
||
def test_for_sequence_classification(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
||
|
||
def test_for_token_classification(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
||
|
||
def test_model_as_decoder(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
||
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
|
||
|
||
def test_model_as_decoder_with_default_input_mask(self):
|
||
# This regression test was failing with PyTorch < 1.3
|
||
(
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
) = self.model_tester.prepare_config_and_inputs_for_decoder()
|
||
|
||
input_mask = None
|
||
|
||
self.model_tester.create_and_check_model_as_decoder(
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
)
|
||
|
||
def test_retain_grad_hidden_states_attentions(self):
|
||
# bigbird cannot keep gradients in attentions when `attention_type=block_sparse`
|
||
|
||
if self.model_tester.attention_type == "original_full":
|
||
super().test_retain_grad_hidden_states_attentions()
|
||
|
||
@slow
|
||
def test_model_from_pretrained(self):
|
||
for model_name in BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||
model = BigBirdForPreTraining.from_pretrained(model_name)
|
||
self.assertIsNotNone(model)
|
||
|
||
def test_model_various_attn_type(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
for type in ["original_full", "block_sparse"]:
|
||
config_and_inputs[0].attention_type = type
|
||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||
|
||
def test_fast_integration(self):
|
||
# fmt: off
|
||
input_ids = torch.tensor(
|
||
[[6, 117, 33, 36, 70, 22, 63, 31, 71, 72, 88, 58, 109, 49, 48, 116, 92, 6, 19, 95, 118, 100, 80, 111, 93, 2, 31, 84, 26, 5, 6, 82, 46, 96, 109, 4, 39, 19, 109, 13, 92, 31, 36, 90, 111, 18, 75, 6, 56, 74, 16, 42, 56, 92, 69, 108, 127, 81, 82, 41, 106, 19, 44, 24, 82, 121, 120, 65, 36, 26, 72, 13, 36, 98, 43, 64, 8, 53, 100, 92, 51, 122, 66, 17, 61, 50, 104, 127, 26, 35, 94, 23, 110, 71, 80, 67, 109, 111, 44, 19, 51, 41, 86, 71, 76, 44, 18, 68, 44, 77, 107, 81, 98, 126, 100, 2, 49, 98, 84, 39, 23, 98, 52, 46, 10, 82, 121, 73],[6, 117, 33, 36, 70, 22, 63, 31, 71, 72, 88, 58, 109, 49, 48, 116, 92, 6, 19, 95, 118, 100, 80, 111, 93, 2, 31, 84, 26, 5, 6, 82, 46, 96, 109, 4, 39, 19, 109, 13, 92, 31, 36, 90, 111, 18, 75, 6, 56, 74, 16, 42, 56, 92, 69, 108, 127, 81, 82, 41, 106, 19, 44, 24, 82, 121, 120, 65, 36, 26, 72, 13, 36, 98, 43, 64, 8, 53, 100, 92, 51, 12, 66, 17, 61, 50, 104, 127, 26, 35, 94, 23, 110, 71, 80, 67, 109, 111, 44, 19, 51, 41, 86, 71, 76, 28, 18, 68, 44, 77, 107, 81, 98, 126, 100, 2, 49, 18, 84, 39, 23, 98, 52, 46, 10, 82, 121, 73]], # noqa: E231
|
||
dtype=torch.long,
|
||
device=torch_device,
|
||
)
|
||
# fmt: on
|
||
input_ids = input_ids % self.model_tester.vocab_size
|
||
input_ids[1] = input_ids[1] - 1
|
||
|
||
attention_mask = torch.ones((input_ids.shape), device=torch_device)
|
||
attention_mask[:, :-10] = 0
|
||
|
||
config, _, _, _, _, _, _ = self.model_tester.prepare_config_and_inputs()
|
||
torch.manual_seed(0)
|
||
model = BigBirdModel(config).eval().to(torch_device)
|
||
|
||
with torch.no_grad():
|
||
hidden_states = model(input_ids, attention_mask=attention_mask).last_hidden_state
|
||
self.assertTrue(
|
||
torch.allclose(
|
||
hidden_states[0, 0, :5],
|
||
torch.tensor([1.4825, 0.0774, 0.8226, -0.2962, -0.9593], device=torch_device),
|
||
atol=1e-3,
|
||
)
|
||
)
|
||
|
||
def test_auto_padding(self):
|
||
self.model_tester.seq_length = 241
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_auto_padding(*config_and_inputs)
|
||
|
||
def test_for_change_to_full_attn(self):
|
||
self.model_tester.seq_length = 9
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_for_change_to_full_attn(*config_and_inputs)
|
||
|
||
# overwrite from common in order to skip the check on `attentions`
|
||
def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
|
||
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
|
||
# an effort was done to return `attention_probs` (yet to be verified).
|
||
if name.startswith("outputs.attentions"):
|
||
return
|
||
else:
|
||
super().check_pt_flax_outputs(fx_outputs, pt_outputs, model_class, tol, name, attributes)
|
||
|
||
|
||
@require_torch
|
||
@slow
|
||
class BigBirdModelIntegrationTest(unittest.TestCase):
|
||
# we can have this true once block_sparse attn_probs works accurately
|
||
test_attention_probs = False
|
||
|
||
def _get_dummy_input_ids(self):
|
||
# fmt: off
|
||
ids = torch.tensor(
|
||
[[6, 117, 33, 36, 70, 22, 63, 31, 71, 72, 88, 58, 109, 49, 48, 116, 92, 6, 19, 95, 118, 100, 80, 111, 93, 2, 31, 84, 26, 5, 6, 82, 46, 96, 109, 4, 39, 19, 109, 13, 92, 31, 36, 90, 111, 18, 75, 6, 56, 74, 16, 42, 56, 92, 69, 108, 127, 81, 82, 41, 106, 19, 44, 24, 82, 121, 120, 65, 36, 26, 72, 13, 36, 98, 43, 64, 8, 53, 100, 92, 51, 122, 66, 17, 61, 50, 104, 127, 26, 35, 94, 23, 110, 71, 80, 67, 109, 111, 44, 19, 51, 41, 86, 71, 76, 44, 18, 68, 44, 77, 107, 81, 98, 126, 100, 2, 49, 98, 84, 39, 23, 98, 52, 46, 10, 82, 121, 73]], # noqa: E231
|
||
dtype=torch.long,
|
||
device=torch_device,
|
||
)
|
||
# fmt: on
|
||
return ids
|
||
|
||
def test_inference_block_sparse_pretraining(self):
|
||
model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base", attention_type="block_sparse")
|
||
model.to(torch_device)
|
||
|
||
input_ids = torch.tensor([[20920, 232, 328, 1437] * 1024], dtype=torch.long, device=torch_device)
|
||
with torch.no_grad():
|
||
outputs = model(input_ids)
|
||
prediction_logits = outputs.prediction_logits
|
||
seq_relationship_logits = outputs.seq_relationship_logits
|
||
|
||
self.assertEqual(prediction_logits.shape, torch.Size((1, 4096, 50358)))
|
||
self.assertEqual(seq_relationship_logits.shape, torch.Size((1, 2)))
|
||
|
||
expected_prediction_logits_slice = torch.tensor(
|
||
[
|
||
[-0.2420, -0.6048, -0.0614, 7.8422],
|
||
[-0.0596, -0.0104, -1.8408, 9.3352],
|
||
[1.0588, 0.7999, 5.0770, 8.7555],
|
||
[-0.1385, -1.7199, -1.7613, 6.1094],
|
||
],
|
||
device=torch_device,
|
||
)
|
||
self.assertTrue(
|
||
torch.allclose(prediction_logits[0, 128:132, 128:132], expected_prediction_logits_slice, atol=1e-4)
|
||
)
|
||
|
||
expected_seq_relationship_logits = torch.tensor([[58.8196, 56.3629]], device=torch_device)
|
||
self.assertTrue(torch.allclose(seq_relationship_logits, expected_seq_relationship_logits, atol=1e-4))
|
||
|
||
def test_inference_full_pretraining(self):
|
||
model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base", attention_type="original_full")
|
||
model.to(torch_device)
|
||
|
||
input_ids = torch.tensor([[20920, 232, 328, 1437] * 512], dtype=torch.long, device=torch_device)
|
||
with torch.no_grad():
|
||
outputs = model(input_ids)
|
||
prediction_logits = outputs.prediction_logits
|
||
seq_relationship_logits = outputs.seq_relationship_logits
|
||
|
||
self.assertEqual(prediction_logits.shape, torch.Size((1, 512 * 4, 50358)))
|
||
self.assertEqual(seq_relationship_logits.shape, torch.Size((1, 2)))
|
||
|
||
expected_prediction_logits_slice = torch.tensor(
|
||
[
|
||
[0.1499, -1.1217, 0.1990, 8.4499],
|
||
[-2.7757, -3.0687, -4.8577, 7.5156],
|
||
[1.5446, 0.1982, 4.3016, 10.4281],
|
||
[-1.3705, -4.0130, -3.9629, 5.1526],
|
||
],
|
||
device=torch_device,
|
||
)
|
||
self.assertTrue(
|
||
torch.allclose(prediction_logits[0, 128:132, 128:132], expected_prediction_logits_slice, atol=1e-4)
|
||
)
|
||
|
||
expected_seq_relationship_logits = torch.tensor([[41.4503, 41.2406]], device=torch_device)
|
||
self.assertTrue(torch.allclose(seq_relationship_logits, expected_seq_relationship_logits, atol=1e-4))
|
||
|
||
def test_block_sparse_attention_probs(self):
|
||
"""
|
||
Asserting if outputted attention matrix is similar to hard coded attention matrix
|
||
"""
|
||
|
||
if not self.test_attention_probs:
|
||
return
|
||
|
||
model = BigBirdModel.from_pretrained(
|
||
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
|
||
)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
config = model.config
|
||
|
||
input_ids = self._get_dummy_input_ids()
|
||
|
||
hidden_states = model.embeddings(input_ids)
|
||
|
||
batch_size, seqlen, _ = hidden_states.size()
|
||
attn_mask = torch.ones(batch_size, seqlen, device=torch_device, dtype=torch.float)
|
||
to_seq_length = from_seq_length = seqlen
|
||
from_block_size = to_block_size = config.block_size
|
||
|
||
blocked_mask, band_mask, from_mask, to_mask = model.create_masks_for_block_sparse_attn(
|
||
attn_mask, config.block_size
|
||
)
|
||
from_blocked_mask = to_blocked_mask = blocked_mask
|
||
|
||
for i in range(config.num_hidden_layers):
|
||
pointer = model.encoder.layer[i].attention.self
|
||
|
||
query_layer = pointer.transpose_for_scores(pointer.query(hidden_states))
|
||
key_layer = pointer.transpose_for_scores(pointer.key(hidden_states))
|
||
value_layer = pointer.transpose_for_scores(pointer.value(hidden_states))
|
||
|
||
context_layer, attention_probs = pointer.bigbird_block_sparse_attention(
|
||
query_layer,
|
||
key_layer,
|
||
value_layer,
|
||
band_mask,
|
||
from_mask,
|
||
to_mask,
|
||
from_blocked_mask,
|
||
to_blocked_mask,
|
||
pointer.num_attention_heads,
|
||
pointer.num_random_blocks,
|
||
pointer.attention_head_size,
|
||
from_block_size,
|
||
to_block_size,
|
||
batch_size,
|
||
from_seq_length,
|
||
to_seq_length,
|
||
seed=pointer.seed,
|
||
plan_from_length=None,
|
||
plan_num_rand_blocks=None,
|
||
output_attentions=True,
|
||
)
|
||
|
||
context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
|
||
cl = torch.einsum("bhqk,bhkd->bhqd", attention_probs, value_layer)
|
||
cl = cl.view(context_layer.size())
|
||
|
||
self.assertTrue(torch.allclose(context_layer, cl, atol=0.001))
|
||
|
||
def test_block_sparse_context_layer(self):
|
||
model = BigBirdModel.from_pretrained(
|
||
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
|
||
)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
config = model.config
|
||
|
||
input_ids = self._get_dummy_input_ids()
|
||
dummy_hidden_states = model.embeddings(input_ids)
|
||
|
||
attn_mask = torch.ones_like(input_ids, device=torch_device)
|
||
blocked_mask, band_mask, from_mask, to_mask = model.create_masks_for_block_sparse_attn(
|
||
attn_mask, config.block_size
|
||
)
|
||
targeted_cl = torch.tensor(
|
||
[
|
||
[0.1874, 1.5260, 0.2335, -0.0473, -0.0961, 1.8384, -0.0141, 0.1250, 0.0085, -0.0048],
|
||
[-0.0554, 0.0728, 0.1683, -0.1332, 0.1741, 0.1337, -0.2380, -0.1849, -0.0390, -0.0259],
|
||
[-0.0419, 0.0767, 0.1591, -0.1399, 0.1789, 0.1257, -0.2406, -0.1772, -0.0261, -0.0079],
|
||
[0.1860, 1.5172, 0.2326, -0.0473, -0.0953, 1.8291, -0.0147, 0.1245, 0.0082, -0.0046],
|
||
[0.1879, 1.5296, 0.2335, -0.0471, -0.0975, 1.8433, -0.0136, 0.1260, 0.0086, -0.0054],
|
||
[0.1854, 1.5147, 0.2334, -0.0480, -0.0956, 1.8250, -0.0149, 0.1222, 0.0082, -0.0060],
|
||
[0.1859, 1.5184, 0.2334, -0.0474, -0.0955, 1.8297, -0.0143, 0.1234, 0.0079, -0.0054],
|
||
[0.1885, 1.5336, 0.2335, -0.0467, -0.0979, 1.8481, -0.0130, 0.1269, 0.0085, -0.0049],
|
||
[0.1881, 1.5305, 0.2335, -0.0471, -0.0976, 1.8445, -0.0135, 0.1262, 0.0086, -0.0053],
|
||
[0.1852, 1.5148, 0.2333, -0.0480, -0.0949, 1.8254, -0.0151, 0.1225, 0.0079, -0.0055],
|
||
[0.1877, 1.5292, 0.2335, -0.0470, -0.0972, 1.8431, -0.0135, 0.1259, 0.0084, -0.0052],
|
||
[0.1874, 1.5261, 0.2334, -0.0472, -0.0968, 1.8393, -0.0140, 0.1251, 0.0084, -0.0052],
|
||
[0.1853, 1.5151, 0.2331, -0.0478, -0.0948, 1.8256, -0.0154, 0.1228, 0.0086, -0.0052],
|
||
[0.1867, 1.5233, 0.2334, -0.0475, -0.0965, 1.8361, -0.0139, 0.1247, 0.0084, -0.0054],
|
||
],
|
||
device=torch_device,
|
||
)
|
||
|
||
context_layer = model.encoder.layer[0].attention.self(
|
||
dummy_hidden_states,
|
||
band_mask=band_mask,
|
||
from_mask=from_mask,
|
||
to_mask=to_mask,
|
||
from_blocked_mask=blocked_mask,
|
||
to_blocked_mask=blocked_mask,
|
||
)
|
||
context_layer = context_layer[0]
|
||
|
||
self.assertEqual(context_layer.shape, torch.Size((1, 128, 768)))
|
||
self.assertTrue(torch.allclose(context_layer[0, 64:78, 300:310], targeted_cl, atol=0.0001))
|
||
|
||
def test_tokenizer_inference(self):
|
||
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
|
||
model = BigBirdModel.from_pretrained(
|
||
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
|
||
)
|
||
model.to(torch_device)
|
||
|
||
text = [
|
||
"Transformer-based models are unable to process long sequences due to their self-attention operation,"
|
||
" which scales quadratically with the sequence length. To address this limitation, we introduce the"
|
||
" Longformer with an attention mechanism that scales linearly with sequence length, making it easy to"
|
||
" process documents of thousands of tokens or longer. Longformer’s attention mechanism is a drop-in"
|
||
" replacement for the standard self-attention and combines a local windowed attention with a task"
|
||
" motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer"
|
||
" on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In"
|
||
" contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream"
|
||
" tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new"
|
||
" state-of-the-art results on WikiHop and TriviaQA."
|
||
]
|
||
inputs = tokenizer(text)
|
||
|
||
for k in inputs:
|
||
inputs[k] = torch.tensor(inputs[k], device=torch_device, dtype=torch.long)
|
||
|
||
prediction = model(**inputs)
|
||
prediction = prediction[0]
|
||
|
||
self.assertEqual(prediction.shape, torch.Size((1, 199, 768)))
|
||
|
||
expected_prediction = torch.tensor(
|
||
[
|
||
[-0.0213, -0.2213, -0.0061, 0.0687],
|
||
[0.0977, 0.1858, 0.2374, 0.0483],
|
||
[0.2112, -0.2524, 0.5793, 0.0967],
|
||
[0.2473, -0.5070, -0.0630, 0.2174],
|
||
[0.2885, 0.1139, 0.6071, 0.2991],
|
||
[0.2328, -0.2373, 0.3648, 0.1058],
|
||
[0.2517, -0.0689, 0.0555, 0.0880],
|
||
[0.1021, -0.1495, -0.0635, 0.1891],
|
||
[0.0591, -0.0722, 0.2243, 0.2432],
|
||
[-0.2059, -0.2679, 0.3225, 0.6183],
|
||
[0.2280, -0.2618, 0.1693, 0.0103],
|
||
[0.0183, -0.1375, 0.2284, -0.1707],
|
||
],
|
||
device=torch_device,
|
||
)
|
||
self.assertTrue(torch.allclose(prediction[0, 52:64, 320:324], expected_prediction, atol=1e-4))
|
||
|
||
def test_inference_question_answering(self):
|
||
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-base-trivia-itc")
|
||
model = BigBirdForQuestionAnswering.from_pretrained(
|
||
"google/bigbird-base-trivia-itc", attention_type="block_sparse", block_size=16, num_random_blocks=3
|
||
)
|
||
model.to(torch_device)
|
||
|
||
context = (
|
||
"The BigBird model was proposed in Big Bird: Transformers for Longer Sequences by Zaheer, Manzil and"
|
||
" Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago"
|
||
" and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a"
|
||
" sparse-attention based transformer which extends Transformer based models, such as BERT to much longer"
|
||
" sequences. In addition to sparse attention, BigBird also applies global attention as well as random"
|
||
" attention to the input sequence. Theoretically, it has been shown that applying sparse, global, and"
|
||
" random attention approximates full attention, while being computationally much more efficient for longer"
|
||
" sequences. As a consequence of the capability to handle longer context, BigBird has shown improved"
|
||
" performance on various long document NLP tasks, such as question answering and summarization, compared"
|
||
" to BERT or RoBERTa."
|
||
)
|
||
|
||
question = [
|
||
"Which is better for longer sequences- BigBird or BERT?",
|
||
"What is the benefit of using BigBird over BERT?",
|
||
]
|
||
inputs = tokenizer(
|
||
question,
|
||
[context, context],
|
||
padding=True,
|
||
return_tensors="pt",
|
||
add_special_tokens=True,
|
||
max_length=256,
|
||
truncation=True,
|
||
)
|
||
|
||
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
||
|
||
start_logits, end_logits = model(**inputs).to_tuple()
|
||
|
||
# fmt: off
|
||
target_start_logits = torch.tensor(
|
||
[[-8.9304, -10.3849, -14.4997, -9.6497, -13.9469, -7.8134, -8.9687, -13.3585, -9.7987, -13.8869, -9.2632, -8.9294, -13.6721, -7.3198, -9.5434, -11.2641, -14.3245, -9.5705, -12.7367, -8.6168, -11.083, -13.7573, -8.1151, -14.5329, -7.6876, -15.706, -12.8558, -9.1135, 8.0909, -3.1925, -11.5812, -9.4822], [-11.5595, -14.5591, -10.2978, -14.8445, -10.2092, -11.1899, -13.8356, -10.5644, -14.7706, -9.9841, -11.0052, -14.1862, -8.8173, -11.1098, -12.4686, -15.0531, -11.0196, -13.6614, -10.0236, -11.8151, -14.8744, -9.5123, -15.1605, -8.6472, -15.4184, -8.898, -9.6328, -7.0258, -11.3365, -14.4065, -10.2587, -8.9103]], # noqa: E231
|
||
device=torch_device,
|
||
)
|
||
target_end_logits = torch.tensor(
|
||
[[-12.4131, -8.5959, -15.7163, -11.1524, -15.9913, -12.2038, -7.8902, -16.0296, -12.164, -16.5017, -13.3332, -6.9488, -15.7756, -13.8506, -11.0779, -9.2893, -15.0426, -10.1963, -17.3292, -12.2945, -11.5337, -16.4514, -9.1564, -17.5001, -9.1562, -16.2971, -13.3199, -7.5724, -5.1175, 7.2168, -10.3804, -11.9873], [-10.8654, -14.9967, -11.4144, -16.9189, -14.2673, -9.7068, -15.0182, -12.8846, -16.8716, -13.665, -10.3113, -15.1436, -14.9069, -13.3364, -11.2339, -16.0118, -11.8331, -17.0613, -13.8852, -12.4163, -16.8978, -10.7772, -17.2324, -10.6979, -16.9811, -10.3427, -9.497, -13.7104, -11.1107, -13.2936, -13.855, -14.1264]], # noqa: E231
|
||
device=torch_device,
|
||
)
|
||
# fmt: on
|
||
|
||
self.assertTrue(torch.allclose(start_logits[:, 64:96], target_start_logits, atol=1e-4))
|
||
self.assertTrue(torch.allclose(end_logits[:, 64:96], target_end_logits, atol=1e-4))
|
||
|
||
input_ids = inputs["input_ids"].tolist()
|
||
answer = [
|
||
input_ids[i][torch.argmax(start_logits, dim=-1)[i] : torch.argmax(end_logits, dim=-1)[i] + 1]
|
||
for i in range(len(input_ids))
|
||
]
|
||
answer = tokenizer.batch_decode(answer)
|
||
|
||
self.assertTrue(answer == ["BigBird", "global attention"])
|
||
|
||
def test_fill_mask(self):
|
||
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
|
||
model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
|
||
model.to(torch_device)
|
||
|
||
input_ids = tokenizer("The goal of life is [MASK] .", return_tensors="pt").input_ids.to(torch_device)
|
||
logits = model(input_ids).logits
|
||
|
||
# [MASK] is token at 6th position
|
||
pred_token = tokenizer.decode(torch.argmax(logits[0, 6:7], axis=-1))
|
||
self.assertEqual(pred_token, "happiness")
|
||
|
||
def test_auto_padding(self):
|
||
model = BigBirdModel.from_pretrained(
|
||
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
|
||
)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
input_ids = torch.tensor([200 * [10] + 40 * [2] + [1]], device=torch_device, dtype=torch.long)
|
||
with torch.no_grad():
|
||
output = model(input_ids).to_tuple()[0]
|
||
|
||
# fmt: off
|
||
target = torch.tensor(
|
||
[[-0.045136, -0.068013, 0.12246, -0.01356, 0.018386, 0.025333, -0.0044439, -0.0030996, -0.064031, 0.0006439], [-0.045018, -0.067638, 0.12317, -0.013998, 0.019216, 0.025695, -0.0043705, -0.0031895, -0.063153, 0.00088899], [-0.045042, -0.067305, 0.1234, -0.014512, 0.020057, 0.026084, -0.004615, -0.0031728, -0.062442, 0.0010263], [-0.044589, -0.067655, 0.12416, -0.014287, 0.019416, 0.026065, -0.0050958, -0.002702, -0.063158, 0.0004827], [-0.044627, -0.067535, 0.1239, -0.014319, 0.019491, 0.026213, -0.0059482, -0.0025906, -0.063116, 0.00014669], [-0.044899, -0.067704, 0.12337, -0.014231, 0.019256, 0.026345, -0.0065565, -0.0022938, -0.063433, -0.00011409], [-0.045599, -0.067764, 0.12235, -0.014151, 0.019206, 0.026417, -0.0068965, -0.0024494, -0.063313, -4.4499e-06], [-0.045557, -0.068372, 0.12199, -0.013747, 0.017962, 0.026103, -0.0070607, -0.0023552, -0.06447, -0.00048756], [-0.045334, -0.068913, 0.1217, -0.013566, 0.01693, 0.025745, -0.006311, -0.0024903, -0.065575, -0.0006719], [-0.045171, -0.068726, 0.12164, -0.013688, 0.017139, 0.025629, -0.005213, -0.0029412, -0.065237, -0.00020669], [-0.044411, -0.069267, 0.12206, -0.013645, 0.016212, 0.025589, -0.0044121, -0.002972, -0.066277, -0.00067963], [-0.043487, -0.069792, 0.1232, -0.013663, 0.015303, 0.02613, -0.0036294, -0.0030616, -0.067483, -0.0012642], [-0.042622, -0.069287, 0.12469, -0.013936, 0.016204, 0.026474, -0.0040534, -0.0027365, -0.066994, -0.0014148], [-0.041879, -0.070031, 0.12593, -0.014047, 0.015082, 0.027751, -0.0040683, -0.0027189, -0.068985, -0.0027146]], # noqa: E231
|
||
device=torch_device,
|
||
)
|
||
# fmt: on
|
||
|
||
self.assertEqual(output.shape, torch.Size((1, 241, 768)))
|
||
self.assertTrue(torch.allclose(output[0, 64:78, 300:310], target, atol=0.0001))
|