transformers/tests/test_modeling_big_bird.py
Vasudev Gupta 6dfd027279
BigBird (#10183)
* init bigbird

* model.__init__ working, conversion script ready, config updated

* add conversion script

* BigBirdEmbeddings working :)

* slightly update conversion script

* BigBirdAttention working :) ; some bug in layer.output.dense

* add debugger-notebook

* forward() working for BigBirdModel :) ; replaced gelu with gelu_fast

* tf code adapted to torch till rand_attn in bigbird_block_sparse_attention ; till now everything working :)

* BigBirdModel working in block-sparse attention mode :)

* add BigBirdForPreTraining

* small fix

* add tokenizer for BigBirdModel

* fix config & hence modeling

* fix base prefix

* init testing

* init tokenizer test

* pos_embed must be absolute, attn_type=original_full when add_cross_attn=True , nsp loss is optional in BigBirdForPreTraining, add assert statements

* remove position_embedding_type arg

* complete normal tests

* add comments to block sparse attention

* add attn_probs for sliding & global tokens

* create fn for block sparse attn mask creation

* add special tests

* restore pos embed arg

* minor fix

* attn probs update

* make big bird fully gpu friendly

* fix tests

* remove pruning

* correct tokenzier & minor fixes

* update conversion script , remove norm_type

* tokenizer-inference test add

* remove extra comments

* add docs

* save intermediate

* finish trivia_qa conversion

* small update to forward

* correct qa and layer

* better error message

* BigBird QA ready

* fix rebased

* add triva-qa debugger notebook

* qa setup

* fixed till embeddings

* some issue in q/k/v_layer

* fix bug in conversion-script

* fixed till self-attn

* qa fixed except layer norm

* add qa end2end test

* fix gradient ckpting ; other qa test

* speed-up big bird a bit

* hub_id=google

* clean up

* make quality

* speed up einsum with bmm

* finish perf improvements for big bird

* remove wav2vec2 tok

* fix tokenizer

* include docs

* correct docs

* add helper to auto pad block size

* make style

* remove fast tokenizer for now

* fix some

* add pad test

* finish

* fix some bugs

* fix another bug

* fix buffer tokens

* fix comment and merge from master

* add comments

* make style

* commit some suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix typos

* fix some more suggestions

* add another patch

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* another path

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* update

* update nit suggestions

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-03-30 08:51:34 +03:00

907 lines
39 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BigBird model. """
import unittest
from tests.test_modeling_common import floats_tensor
from transformers import is_torch_available
from transformers.models.big_bird.tokenization_big_bird import BigBirdTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
BigBirdConfig,
BigBirdForCausalLM,
BigBirdForMaskedLM,
BigBirdForMultipleChoice,
BigBirdForPreTraining,
BigBirdForQuestionAnswering,
BigBirdForSequenceClassification,
BigBirdForTokenClassification,
BigBirdModel,
)
from transformers.models.big_bird.modeling_big_bird import BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST
class BigBirdModelTester:
def __init__(
self,
parent,
batch_size=7,
seq_length=128,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu_fast",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=256,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
attention_type="block_sparse",
use_bias=True,
rescale_embeddings=False,
block_size=16,
num_rand_blocks=3,
position_embedding_type="absolute",
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.attention_type = attention_type
self.use_bias = use_bias
self.rescale_embeddings = rescale_embeddings
self.block_size = block_size
self.num_rand_blocks = num_rand_blocks
self.position_embedding_type = position_embedding_type
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BigBirdConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_encoder_decoder=False,
initializer_range=self.initializer_range,
attention_type=self.attention_type,
use_bias=self.use_bias,
rescale_embeddings=self.rescale_embeddings,
block_size=self.block_size,
num_random_blocks=self.num_rand_blocks,
position_embedding_type=self.position_embedding_type,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BigBirdModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BigBirdForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, config.num_labels))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = BigBirdModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = BigBirdForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BigBirdForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = BigBirdForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = BigBirdForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = BigBirdForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = BigBirdForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = BigBirdForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def create_and_check_for_auto_padding(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = BigBirdModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_change_to_full_attn(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = BigBirdModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# the config should not be changed
self.parent.assertTrue(model.config.attention_type == "block_sparse")
@require_torch
class BigBirdModelTest(ModelTesterMixin, unittest.TestCase):
# head masking & pruning is currently not supported for big bird
test_head_masking = False
test_pruning = False
# torchscript should be possible, but takes prohibitively long to test.
# Also torchscript is not an important feature to have in the beginning.
test_torchscript = False
all_model_classes = (
(
BigBirdModel,
BigBirdForPreTraining,
BigBirdForMaskedLM,
BigBirdForCausalLM,
BigBirdForMultipleChoice,
BigBirdForQuestionAnswering,
BigBirdForSequenceClassification,
BigBirdForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (BigBirdForCausalLM,) if is_torch_available() else ()
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = BigBirdModelTester(self)
self.config_tester = ConfigTester(self, config_class=BigBirdConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_retain_grad_hidden_states_attentions(self):
# bigbird cannot keep gradients in attentions when `attention_type=block_sparse`
if self.model_tester.attention_type == "original_full":
super().test_retain_grad_hidden_states_attentions()
@slow
def test_model_from_pretrained(self):
for model_name in BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = BigBirdForPreTraining.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_model_various_attn_type(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["original_full", "block_sparse"]:
config_and_inputs[0].attention_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Fast integration only compatible on GPU")
def test_fast_integration(self):
torch.manual_seed(0)
input_ids = torch.randint(
self.model_tester.vocab_size,
(self.model_tester.batch_size, self.model_tester.seq_length),
device=torch_device,
)
attention_mask = torch.ones((self.model_tester.batch_size, self.model_tester.seq_length), device=torch_device)
attention_mask[:, :-10] = 0
token_type_ids = torch.randint(
self.model_tester.type_vocab_size,
(self.model_tester.batch_size, self.model_tester.seq_length),
device=torch_device,
)
config, _, _, _, _, _, _ = self.model_tester.prepare_config_and_inputs()
model = BigBirdModel(config).to(torch_device).eval()
with torch.no_grad():
hidden_states = model(
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
).last_hidden_state
self.assertTrue(
torch.allclose(
hidden_states[0, 0, :5],
torch.tensor([-0.6326, 0.6124, -0.0844, 0.6698, -1.7155], device=torch_device),
atol=1e-3,
)
)
def test_auto_padding(self):
self.model_tester.seq_length = 241
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_auto_padding(*config_and_inputs)
def test_for_change_to_full_attn(self):
self.model_tester.seq_length = 9
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_change_to_full_attn(*config_and_inputs)
@require_torch
@slow
class BigBirdModelIntegrationTest(unittest.TestCase):
# we can have this true once block_sparse attn_probs works accurately
test_attention_probs = False
def _get_dummy_input_ids(self):
# fmt: off
ids = torch.tensor(
[[6, 117, 33, 36, 70, 22, 63, 31, 71, 72, 88, 58, 109, 49, 48, 116, 92, 6, 19, 95, 118, 100, 80, 111, 93, 2, 31, 84, 26, 5, 6, 82, 46, 96, 109, 4, 39, 19, 109, 13, 92, 31, 36, 90, 111, 18, 75, 6, 56, 74, 16, 42, 56, 92, 69, 108, 127, 81, 82, 41, 106, 19, 44, 24, 82, 121, 120, 65, 36, 26, 72, 13, 36, 98, 43, 64, 8, 53, 100, 92, 51, 122, 66, 17, 61, 50, 104, 127, 26, 35, 94, 23, 110, 71, 80, 67, 109, 111, 44, 19, 51, 41, 86, 71, 76, 44, 18, 68, 44, 77, 107, 81, 98, 126, 100, 2, 49, 98, 84, 39, 23, 98, 52, 46, 10, 82, 121, 73]], # noqa: E231
dtype=torch.long,
device=torch_device,
)
# fmt: on
return ids
def test_inference_block_sparse_pretraining(self):
model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base", attention_type="block_sparse")
model.to(torch_device)
input_ids = torch.tensor([[20920, 232, 328, 1437] * 1024], dtype=torch.long, device=torch_device)
outputs = model(input_ids)
prediction_logits = outputs.prediction_logits
seq_relationship_logits = outputs.seq_relationship_logits
self.assertEqual(prediction_logits.shape, torch.Size((1, 4096, 50358)))
self.assertEqual(seq_relationship_logits.shape, torch.Size((1, 2)))
expected_prediction_logits_slice = torch.tensor(
[
[-0.2420, -0.6048, -0.0614, 7.8422],
[-0.0596, -0.0104, -1.8408, 9.3352],
[1.0588, 0.7999, 5.0770, 8.7555],
[-0.1385, -1.7199, -1.7613, 6.1094],
],
device=torch_device,
)
self.assertTrue(
torch.allclose(prediction_logits[0, 128:132, 128:132], expected_prediction_logits_slice, atol=1e-4)
)
expected_seq_relationship_logits = torch.tensor([[58.8196, 56.3629]], device=torch_device)
self.assertTrue(torch.allclose(seq_relationship_logits, expected_seq_relationship_logits, atol=1e-4))
def test_inference_full_pretraining(self):
model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base", attention_type="original_full")
model.to(torch_device)
input_ids = torch.tensor([[20920, 232, 328, 1437] * 512], dtype=torch.long, device=torch_device)
outputs = model(input_ids)
prediction_logits = outputs.prediction_logits
seq_relationship_logits = outputs.seq_relationship_logits
self.assertEqual(prediction_logits.shape, torch.Size((1, 512 * 4, 50358)))
self.assertEqual(seq_relationship_logits.shape, torch.Size((1, 2)))
expected_prediction_logits_slice = torch.tensor(
[
[0.1499, -1.1217, 0.1990, 8.4499],
[-2.7757, -3.0687, -4.8577, 7.5156],
[1.5446, 0.1982, 4.3016, 10.4281],
[-1.3705, -4.0130, -3.9629, 5.1526],
],
device=torch_device,
)
self.assertTrue(
torch.allclose(prediction_logits[0, 128:132, 128:132], expected_prediction_logits_slice, atol=1e-4)
)
expected_seq_relationship_logits = torch.tensor([[41.4503, 41.2406]], device=torch_device)
self.assertTrue(torch.allclose(seq_relationship_logits, expected_seq_relationship_logits, atol=1e-4))
def test_block_sparse_attention_probs(self):
"""
Asserting if outputted attention matrix is similar to hard coded attention matrix
"""
if not self.test_attention_probs:
return
model = BigBirdModel.from_pretrained(
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
)
model.to(torch_device)
model.eval()
config = model.config
input_ids = self._get_dummy_input_ids()
hidden_states = model.embeddings(input_ids)
batch_size, seqlen, _ = hidden_states.size()
attn_mask = torch.ones(batch_size, seqlen, device=torch_device, dtype=torch.float)
to_seq_length = from_seq_length = seqlen
from_block_size = to_block_size = config.block_size
blocked_mask, band_mask, from_mask, to_mask = model.create_masks_for_block_sparse_attn(
attn_mask, config.block_size
)
from_blocked_mask = to_blocked_mask = blocked_mask
for i in range(config.num_hidden_layers):
pointer = model.encoder.layer[i].attention.self
query_layer = pointer.transpose_for_scores(pointer.query(hidden_states))
key_layer = pointer.transpose_for_scores(pointer.key(hidden_states))
value_layer = pointer.transpose_for_scores(pointer.value(hidden_states))
context_layer, attention_probs = pointer.bigbird_block_sparse_attention(
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
pointer.num_attention_heads,
pointer.num_random_blocks,
pointer.attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_length,
to_seq_length,
seed=pointer.seed,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=True,
)
context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
cl = torch.einsum("bhqk,bhkd->bhqd", attention_probs, value_layer)
cl = cl.view(context_layer.size())
self.assertTrue(torch.allclose(context_layer, cl, atol=0.001))
def test_block_sparse_context_layer(self):
model = BigBirdModel.from_pretrained(
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
)
model.to(torch_device)
model.eval()
config = model.config
input_ids = self._get_dummy_input_ids()
dummy_hidden_states = model.embeddings(input_ids)
attn_mask = torch.ones_like(input_ids, device=torch_device)
blocked_mask, band_mask, from_mask, to_mask = model.create_masks_for_block_sparse_attn(
attn_mask, config.block_size
)
targeted_cl = torch.tensor(
[
[0.1874, 1.5260, 0.2335, -0.0473, -0.0961, 1.8384, -0.0141, 0.1250, 0.0085, -0.0048],
[-0.0554, 0.0728, 0.1683, -0.1332, 0.1741, 0.1337, -0.2380, -0.1849, -0.0390, -0.0259],
[-0.0419, 0.0767, 0.1591, -0.1399, 0.1789, 0.1257, -0.2406, -0.1772, -0.0261, -0.0079],
[0.1860, 1.5172, 0.2326, -0.0473, -0.0953, 1.8291, -0.0147, 0.1245, 0.0082, -0.0046],
[0.1879, 1.5296, 0.2335, -0.0471, -0.0975, 1.8433, -0.0136, 0.1260, 0.0086, -0.0054],
[0.1854, 1.5147, 0.2334, -0.0480, -0.0956, 1.8250, -0.0149, 0.1222, 0.0082, -0.0060],
[0.1859, 1.5184, 0.2334, -0.0474, -0.0955, 1.8297, -0.0143, 0.1234, 0.0079, -0.0054],
[0.1885, 1.5336, 0.2335, -0.0467, -0.0979, 1.8481, -0.0130, 0.1269, 0.0085, -0.0049],
[0.1881, 1.5305, 0.2335, -0.0471, -0.0976, 1.8445, -0.0135, 0.1262, 0.0086, -0.0053],
[0.1852, 1.5148, 0.2333, -0.0480, -0.0949, 1.8254, -0.0151, 0.1225, 0.0079, -0.0055],
[0.1877, 1.5292, 0.2335, -0.0470, -0.0972, 1.8431, -0.0135, 0.1259, 0.0084, -0.0052],
[0.1874, 1.5261, 0.2334, -0.0472, -0.0968, 1.8393, -0.0140, 0.1251, 0.0084, -0.0052],
[0.1853, 1.5151, 0.2331, -0.0478, -0.0948, 1.8256, -0.0154, 0.1228, 0.0086, -0.0052],
[0.1867, 1.5233, 0.2334, -0.0475, -0.0965, 1.8361, -0.0139, 0.1247, 0.0084, -0.0054],
],
device=torch_device,
)
context_layer = model.encoder.layer[0].attention.self(
dummy_hidden_states,
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=blocked_mask,
to_blocked_mask=blocked_mask,
)
context_layer = context_layer[0]
self.assertEqual(context_layer.shape, torch.Size((1, 128, 768)))
self.assertTrue(torch.allclose(context_layer[0, 64:78, 300:310], targeted_cl, atol=0.0001))
def test_tokenizer_inference(self):
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
model = BigBirdModel.from_pretrained(
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
)
model.to(torch_device)
text = [
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth ... This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth ,, I was born in 92000, and this is falsé.'
]
inputs = tokenizer(text)
for k in inputs:
inputs[k] = torch.tensor(inputs[k], device=torch_device, dtype=torch.long)
prediction = model(**inputs)
prediction = prediction[0]
self.assertEqual(prediction.shape, torch.Size((1, 128, 768)))
expected_prediction = torch.tensor(
[
[-0.0745, 0.0689, -0.1126, -0.0610],
[-0.0343, 0.0111, -0.0269, -0.0858],
[0.1150, 0.0896, 0.0492, 0.0149],
[-0.0657, 0.2035, 0.0444, -0.0535],
[0.1143, 0.0465, 0.1583, -0.1855],
[-0.0216, 0.0807, 0.0536, 0.1371],
[-0.1879, 0.0097, -0.1916, 0.1701],
[0.7616, 0.1240, 0.0669, 0.2588],
[0.1096, -0.1810, -0.1987, 0.0445],
[0.1810, -0.3608, -0.0081, 0.1764],
[-0.0472, 0.0460, 0.0976, -0.0021],
[-0.0274, -0.3274, -0.0788, 0.0465],
],
device=torch_device,
)
self.assertTrue(torch.allclose(prediction[0, 52:64, 320:324], expected_prediction, atol=1e-4))
def test_inference_question_answering(self):
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-base-trivia-itc")
model = BigBirdForQuestionAnswering.from_pretrained(
"google/bigbird-base-trivia-itc", attention_type="block_sparse", block_size=16, num_random_blocks=3
)
model.to(torch_device)
context = "🤗 Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch. Extractive Question Answering is the task of extracting an answer from a text given a question. An example of a question answering dataset is the SQuAD dataset"
question = [
"How many pretrained models are available in 🤗 Transformers?",
"🤗 Transformers provides interoperability between which frameworks?",
]
inputs = tokenizer(
question,
[context, context],
padding=True,
return_tensors="pt",
add_special_tokens=True,
max_length=128,
truncation=True,
)
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
start_logits, end_logits = model(**inputs).to_tuple()
# fmt: off
target_start_logits = torch.tensor(
[[-9.5889, -10.2121, -14.2158, -11.1457, -10.7376, -7.3907, -10.2084, -9.5659, -15.0336, -8.6686, -9.1737, -11.1457, -13.4722, -6.3336, -9.6311, -8.4821, -15.141, -9.1226, -10.3328, -11.1457, -6.6793, -3.9627, 2.7126, -5.5607, -8.4625, -12.499, -11.4757, -9.6334, -4.0565, -10.0474, -7.4126, -13.5669], [-15.3796, -12.6863, -10.3951, -7.6706, -10.1808, -11.4401, -15.5868, -12.7959, -11.0186, -12.6863, -14.2198, -8.1182, -11.1353, -11.6512, -15.702, -12.8964, -12.5173, -12.6863, -14.4133, -13.1532, -12.2846, -14.1572, -11.2747, -11.1159, -11.5219, -13.1115, -11.8779, -13.989, -11.5234, -15.0459, -10.0178, -12.9253]], # noqa: E231
device=torch_device,
)
target_end_logits = torch.tensor(
[[-12.4895, -10.9826, -13.8226, -11.9922, -13.2647, -12.4584, -10.6143, -9.4091, -16.844, -14.0393, -9.5914, -11.9922, -15.5142, -11.4073, -10.1064, -8.3961, -16.4374, -13.9323, -10.791, -11.9922, -8.736, -9.5672, 0.2844, -4.0976, -13.849, -11.8035, -12.7784, -14.1314, -7.4138, -10.5488, -8.0133, -14.8779], [-14.9831, -13.4818, -13.1566, -12.7259, -10.5892, -10.8605, -17.2376, -15.9398, -12.8739, -13.4818, -16.6979, -13.3403, -11.6416, -11.392, -16.9553, -15.723, -13.2643, -13.4818, -16.2067, -15.6688, -15.0449, -15.1253, -15.1373, -12.385, -13.3652, -15.9473, -14.9587, -15.5024, -13.1482, -16.6358, -12.3908, -15.7493]], # noqa: E231
device=torch_device,
)
# fmt: on
self.assertTrue(torch.allclose(start_logits[:, 64:96], target_start_logits, atol=1e-4))
self.assertTrue(torch.allclose(end_logits[:, 64:96], target_end_logits, atol=1e-4))
input_ids = inputs["input_ids"].tolist()
answer = [
input_ids[i][torch.argmax(start_logits, dim=-1)[i] : torch.argmax(end_logits, dim=-1)[i] + 1]
for i in range(len(input_ids))
]
answer = tokenizer.batch_decode(answer)
self.assertTrue(answer == ["32", "[SEP]"])
def test_fill_mask(self):
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
model.to(torch_device)
input_ids = tokenizer("The goal of life is [MASK] .", return_tensors="pt").input_ids.to(torch_device)
logits = model(input_ids).logits
# [MASK] is token at 6th position
pred_token = tokenizer.decode(torch.argmax(logits[0, 6:7], axis=-1))
self.assertEqual(pred_token, "happiness")
def test_auto_padding(self):
model = BigBirdModel.from_pretrained(
"google/bigbird-roberta-base", attention_type="block_sparse", num_random_blocks=3, block_size=16
)
model.to(torch_device)
model.eval()
input_ids = torch.tensor([200 * [10] + 40 * [2] + [1]], device=torch_device, dtype=torch.long)
output = model(input_ids).to_tuple()[0]
# fmt: off
target = torch.tensor(
[[-0.045136, -0.068013, 0.12246, -0.01356, 0.018386, 0.025333, -0.0044439, -0.0030996, -0.064031, 0.0006439], [-0.045018, -0.067638, 0.12317, -0.013998, 0.019216, 0.025695, -0.0043705, -0.0031895, -0.063153, 0.00088899], [-0.045042, -0.067305, 0.1234, -0.014512, 0.020057, 0.026084, -0.004615, -0.0031728, -0.062442, 0.0010263], [-0.044589, -0.067655, 0.12416, -0.014287, 0.019416, 0.026065, -0.0050958, -0.002702, -0.063158, 0.0004827], [-0.044627, -0.067535, 0.1239, -0.014319, 0.019491, 0.026213, -0.0059482, -0.0025906, -0.063116, 0.00014669], [-0.044899, -0.067704, 0.12337, -0.014231, 0.019256, 0.026345, -0.0065565, -0.0022938, -0.063433, -0.00011409], [-0.045599, -0.067764, 0.12235, -0.014151, 0.019206, 0.026417, -0.0068965, -0.0024494, -0.063313, -4.4499e-06], [-0.045557, -0.068372, 0.12199, -0.013747, 0.017962, 0.026103, -0.0070607, -0.0023552, -0.06447, -0.00048756], [-0.045334, -0.068913, 0.1217, -0.013566, 0.01693, 0.025745, -0.006311, -0.0024903, -0.065575, -0.0006719], [-0.045171, -0.068726, 0.12164, -0.013688, 0.017139, 0.025629, -0.005213, -0.0029412, -0.065237, -0.00020669], [-0.044411, -0.069267, 0.12206, -0.013645, 0.016212, 0.025589, -0.0044121, -0.002972, -0.066277, -0.00067963], [-0.043487, -0.069792, 0.1232, -0.013663, 0.015303, 0.02613, -0.0036294, -0.0030616, -0.067483, -0.0012642], [-0.042622, -0.069287, 0.12469, -0.013936, 0.016204, 0.026474, -0.0040534, -0.0027365, -0.066994, -0.0014148], [-0.041879, -0.070031, 0.12593, -0.014047, 0.015082, 0.027751, -0.0040683, -0.0027189, -0.068985, -0.0027146]], # noqa: E231
device=torch_device,
)
# fmt: on
self.assertEqual(output.shape, torch.Size((1, 241, 768)))
self.assertTrue(torch.allclose(output[0, 64:78, 300:310], target, atol=0.0001))