mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
768 lines
35 KiB
Python
768 lines
35 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import set_seed
|
|
from transformers.testing_utils import (
|
|
CaptureStderr,
|
|
get_gpu_count,
|
|
is_torch_available,
|
|
require_gptq,
|
|
require_non_xpu,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
DynamicCache,
|
|
GenerationConfig,
|
|
GPT2LMHeadModel,
|
|
LlamaConfig,
|
|
SinkCache,
|
|
StaticCache,
|
|
convert_and_export_with_cache,
|
|
)
|
|
from transformers.utils import is_torch_greater_or_equal
|
|
|
|
|
|
@require_torch
|
|
class CacheTest(unittest.TestCase):
|
|
def test_dynamic_cache_retrocompatibility(self):
|
|
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
|
|
legacy_cache = ()
|
|
new_cache = DynamicCache()
|
|
|
|
# Creates a new cache with 10 layers in both formats
|
|
for layer_idx in range(10):
|
|
new_key = torch.rand((2, 4, 8, 16))
|
|
new_value = torch.rand((2, 4, 8, 16))
|
|
new_cache.update(new_key, new_value, layer_idx)
|
|
legacy_cache += ((new_key, new_value),)
|
|
|
|
# Sanity check 1: they must have the same shapes
|
|
self.assertTrue(len(legacy_cache), len(new_cache))
|
|
for layer_idx in range(10):
|
|
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx]))
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape
|
|
)
|
|
|
|
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the
|
|
# expected value
|
|
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8)
|
|
|
|
# Sanity check 3: they must be equal, and both support indexing
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
# Test 1: We can convert from legacy to new with no changes
|
|
from_legacy = DynamicCache.from_legacy_cache(legacy_cache)
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
# Test 2: We can convert from new to legacy with no changes
|
|
to_legacy = new_cache.to_legacy_cache()
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
def test_reorder_cache_retrocompatibility(self):
|
|
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path"""
|
|
legacy_reorder_fn = GPT2LMHeadModel._reorder_cache # An example of a legacy `_reorder_cache` function
|
|
|
|
legacy_cache = ()
|
|
new_cache = DynamicCache()
|
|
|
|
# Creates a new cache with 10 layers in both formats
|
|
for layer_idx in range(10):
|
|
new_key = torch.rand((4, 4, 8, 16))
|
|
new_value = torch.rand((4, 4, 8, 16))
|
|
new_cache.update(new_key, new_value, layer_idx)
|
|
legacy_cache += ((new_key, new_value),)
|
|
|
|
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4
|
|
# and batch_size=1
|
|
beam_idx = torch.randint(low=0, high=4, size=(4,))
|
|
|
|
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx)
|
|
new_cache.reorder_cache(beam_idx)
|
|
|
|
# Let's check that the results are the same
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx]
|
|
)
|
|
)
|
|
|
|
def test_static_cache_mha_mqa_gqa(self):
|
|
"""
|
|
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
|
|
attention (MQA)
|
|
"""
|
|
|
|
def _random_kvs(config):
|
|
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
|
|
random_keys = torch.rand(
|
|
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
|
|
device=torch_device,
|
|
)
|
|
random_values = torch.rand(
|
|
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
|
|
device=torch_device,
|
|
)
|
|
return random_keys, random_values
|
|
|
|
mha_config = LlamaConfig(num_attention_heads=32)
|
|
mha_static_cache = StaticCache(config=mha_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = mha_static_cache.update(
|
|
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 32, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 32, 10, 128))
|
|
|
|
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4)
|
|
gqa_static_cache = StaticCache(config=gqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = gqa_static_cache.update(
|
|
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 4, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 4, 10, 128))
|
|
|
|
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1)
|
|
mqa_static_cache = StaticCache(config=mqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = mqa_static_cache.update(
|
|
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 1, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 1, 10, 128))
|
|
|
|
def test_dynamic_cache_exportability(self):
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
|
|
model = model.eval()
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
|
|
prompt = "What is the best way to debug python script?"
|
|
inputs = tokenizer(prompt, return_tensors="pt")
|
|
attention_mask = inputs.attention_mask
|
|
input_ids = inputs.input_ids
|
|
|
|
past_key_values = DynamicCache()
|
|
ep = torch.export.export(
|
|
model,
|
|
(),
|
|
{
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": True,
|
|
},
|
|
strict=False,
|
|
)
|
|
res = ep.module()(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
self.assertTrue(len(res.past_key_values.key_cache) == model.config.num_hidden_layers)
|
|
self.assertEqual(2 * model.config.num_hidden_layers + 1, len(ep.graph_signature.output_specs))
|
|
self.assertEqual(
|
|
3,
|
|
len(
|
|
[
|
|
x
|
|
for x in ep.graph_signature.input_specs
|
|
if x.kind == torch.export.graph_signature.InputKind.USER_INPUT
|
|
]
|
|
),
|
|
)
|
|
|
|
past_key_values_eager = DynamicCache()
|
|
res_eager = model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values_eager,
|
|
use_cache=True,
|
|
)
|
|
self.assertTrue(torch.allclose(res.logits, res_eager.logits))
|
|
for k1, k2 in zip(res.past_key_values.key_cache, res_eager.past_key_values.key_cache):
|
|
self.assertTrue(torch.allclose(k1, k2))
|
|
|
|
for v1, v2 in zip(res.past_key_values.value_cache, res_eager.past_key_values.value_cache):
|
|
self.assertTrue(torch.allclose(v1, v2))
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_static_cache_exportability(self):
|
|
"""
|
|
Tests that static cache works with `torch.export()`
|
|
"""
|
|
if not is_torch_greater_or_equal("2.3"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
set_seed(0)
|
|
device = "cpu"
|
|
dtype = "bfloat16"
|
|
cache_implementation = "static"
|
|
attn_implementation = "sdpa" # Export and ExecuTorch only works for SdpaAttention
|
|
batch_size = 1
|
|
max_cache_len = 1234
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2b",
|
|
device_map=device,
|
|
torch_dtype=dtype,
|
|
attn_implementation=attn_implementation,
|
|
generation_config=GenerationConfig(
|
|
use_cache=True,
|
|
cache_implementation=cache_implementation,
|
|
max_length=max_cache_len,
|
|
cache_config={
|
|
"batch_size": batch_size,
|
|
"max_cache_len": max_cache_len,
|
|
"device": device,
|
|
},
|
|
),
|
|
)
|
|
# Check if cache config is passed through correctly
|
|
self.assertEqual(model.generation_config.use_cache, True)
|
|
self.assertEqual(model.generation_config.cache_implementation, cache_implementation)
|
|
self.assertEqual(model.generation_config.max_length, max_cache_len)
|
|
self.assertTrue(model.generation_config.cache_config is not None)
|
|
self.assertEqual(model.generation_config.cache_config.batch_size, batch_size)
|
|
self.assertEqual(model.generation_config.cache_config.max_cache_len, max_cache_len)
|
|
|
|
exported_program = convert_and_export_with_cache(model)
|
|
|
|
# Check if the exported model is configured with the `StaticCache` correctly
|
|
n_static_key_caches = n_static_value_caches = 0
|
|
for buffer_name, buffer in exported_program.named_buffers():
|
|
if buffer_name.startswith("key_cache"):
|
|
self.assertTrue(buffer.shape[0] == batch_size)
|
|
self.assertTrue(buffer.shape[2] == max_cache_len)
|
|
n_static_key_caches = n_static_key_caches + 1
|
|
if buffer_name.startswith("value_cache"):
|
|
self.assertTrue(buffer.shape[0] == batch_size)
|
|
self.assertTrue(buffer.shape[2] == max_cache_len)
|
|
n_static_value_caches = n_static_value_caches + 1
|
|
self.assertEqual(n_static_key_caches, model.config.num_hidden_layers)
|
|
self.assertEqual(n_static_value_caches, model.config.num_hidden_layers)
|
|
|
|
|
|
@require_torch_accelerator
|
|
@slow
|
|
class CacheIntegrationTest(unittest.TestCase):
|
|
def test_dynamic_cache_hard(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device)
|
|
|
|
# DynamicCache and the legacy cache format should be equivalent
|
|
set_seed(0)
|
|
gen_out_legacy = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=True, max_new_tokens=256, past_key_values=DynamicCache())
|
|
self.assertListEqual(gen_out_legacy.tolist(), gen_out.tolist())
|
|
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = (
|
|
"Here's everything I know about cats. Cats are mysterious creatures. They can't talk, and they don't like "
|
|
"to be held. They don't play fetch, and they don't like to be hugged. But they do like to be petted.\n"
|
|
"Cats are also very independent. They don't like to be told what to do, and they don't like to be told "
|
|
"what to eat. They are also very territorial. They don't like to share their food or their toys.\nCats "
|
|
"are also very curious. They like to explore, and they like to play. They are also very fast. They can "
|
|
"run very fast, and they can jump very high.\nCats are also very smart. They can learn tricks, and they "
|
|
"can solve problems. They are also very playful. They like to play with toys, and they like to play with "
|
|
"other cats.\nCats are also very affectionate. They like to be petted, and they like to be held. They "
|
|
"also like to be scratched.\nCats are also very clean. They like to groom themselves, and they like to "
|
|
"clean their litter box.\nCats are also very independent. They don't"
|
|
)
|
|
self.assertEqual(decoded[0], expected_text)
|
|
|
|
def test_dynamic_cache_batched(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
inputs = tokenizer(["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt").to(
|
|
model.device
|
|
)
|
|
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10, past_key_values=DynamicCache())
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"]
|
|
self.assertListEqual(decoded, expected_text)
|
|
|
|
def test_dynamic_cache_beam_search(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
|
|
inputs = tokenizer(["The best color is"], return_tensors="pt").to(model.device)
|
|
gen_out = model.generate(
|
|
**inputs,
|
|
do_sample=False,
|
|
max_new_tokens=20,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = [
|
|
"The best color is the one that makes you feel good.\nThe best color is the one that makes you feel good",
|
|
"The best color is the one that suits you.\nThe best color is the one that suits you. The",
|
|
]
|
|
self.assertListEqual(decoded, expected_text)
|
|
|
|
def test_hybrid_cache_n_sequences(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2-9b",
|
|
device_map="auto",
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="eager",
|
|
)
|
|
|
|
inputs = tokenizer(["Hello I am doing"], return_tensors="pt").to(model.device)
|
|
|
|
gen_out = model.generate(
|
|
**inputs,
|
|
do_sample=False,
|
|
max_new_tokens=20,
|
|
num_return_sequences=2,
|
|
num_beams=2,
|
|
)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = [
|
|
"Hello I am doing a project for my school and I am trying to make a program that will allow me to input a",
|
|
"Hello I am doing a project for my school and I am trying to make a program that will allow me to use a",
|
|
]
|
|
self.assertListEqual(decoded, expected_text)
|
|
|
|
@require_non_xpu
|
|
@require_gptq
|
|
def test_sink_cache_hard(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("TheBloke/LLaMa-7B-GPTQ")
|
|
model = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMa-7B-GPTQ", device_map="auto")
|
|
|
|
inputs = tokenizer(["Vaswani et al. (2017) introduced the Transformers"], return_tensors="pt").to(model.device)
|
|
|
|
# Set up the SinkCache. Using a small window length to contain computational complexity. If this example is run
|
|
# without a SinkCache, the last few tokens are gibberish (ends in "of the of the of a of a of")
|
|
cache = SinkCache(window_length=508, num_sink_tokens=4)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=3000, past_key_values=cache)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertTrue(decoded[0].endswith("to perform a variety of tasks. The Transformer is a neural network"))
|
|
|
|
def test_sink_cache_iterative_prompts(self):
|
|
"""Tests that SinkCache supports more than one new token at once, when shifting the cache"""
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"HuggingFaceH4/zephyr-7b-beta", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
prompt = (
|
|
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences "
|
|
"and must-see attractions."
|
|
)
|
|
|
|
# Prepare generation settings
|
|
cache = SinkCache(window_length=256, num_sink_tokens=4)
|
|
input_ids = torch.tensor([], device=model.device, dtype=torch.int)
|
|
for _ in range(3):
|
|
# Tokenize the prompt with the correct chat template
|
|
chat = [{"role": "user", "content": prompt}]
|
|
tokenized_chat = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
|
|
model.device
|
|
)
|
|
input_ids = torch.cat((input_ids, tokenized_chat), dim=1)
|
|
|
|
# Perform the generation
|
|
gen_out = model.generate(
|
|
input_ids, do_sample=False, max_new_tokens=100, past_key_values=cache, use_cache=True
|
|
)
|
|
input_ids = gen_out
|
|
|
|
# We went well beyond the cache length
|
|
self.assertTrue(input_ids.shape[1] > cache.get_max_cache_shape() * 1.5)
|
|
|
|
# And it still produces a coherent english
|
|
decoded = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
|
|
last_output = (
|
|
"<|assistant|>\nAs the sun began to set over the Pacific Ocean, I found myself standing on the shores of "
|
|
"Waikiki Beach, my heart filled with awe and wonder. I had just returned from a two-week journey to the "
|
|
"beautiful island of Hawaii, and it had been an unforgettable experience filled with cultural experiences "
|
|
"and must-see attractions that left me breathless.\n\nOne of the most memorable experiences of my trip "
|
|
"was visiting the historic district of Honolulu. Here,"
|
|
)
|
|
self.assertTrue(decoded[0].endswith(last_output))
|
|
|
|
@require_torch_gpu
|
|
@parameterized.expand(
|
|
[
|
|
("eager", "static"),
|
|
("sdpa", "static"),
|
|
]
|
|
)
|
|
def test_static_cache_greedy_decoding_pad_left(self, attn_implementation, cache_implementation):
|
|
EXPECTED_GENERATION = [
|
|
"The best color is the one that complements the skin tone of the",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation=attn_implementation,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, dynamic"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.generation_config.cache_implementation = cache_implementation
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, eager"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.forward = torch.compile(model.forward)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, compiled"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
@require_torch_gpu
|
|
@parameterized.expand(
|
|
[
|
|
("eager", "static"),
|
|
("sdpa", "static"),
|
|
]
|
|
)
|
|
def test_static_cache_greedy_decoding_pad_right(self, attn_implementation, cache_implementation):
|
|
EXPECTED_GENERATION = [
|
|
"The best color isЋ the one that complements the skin tone of",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="right", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation=attn_implementation,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, dynamic"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.generation_config.cache_implementation = cache_implementation
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, eager"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
def test_dynamic_cache_extra_left_padding(self):
|
|
"""Tests that adding extra left-padding does not affect the generation with the dynamic cache"""
|
|
EXPECTED_GENERATION = [
|
|
"The best color is the one that complements the skin tone of the",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
# Now with extra left-padding
|
|
inputs_expanded = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
pad_to_multiple_of=32,
|
|
).to(model.device)
|
|
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
|
|
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
"static",
|
|
]
|
|
)
|
|
def test_static_cache_extra_left_padding(self, cache_implementation):
|
|
"""Tests that adding extra left-padding does not affect the generation with the static cache"""
|
|
EXPECTED_GENERATION = [
|
|
"The best color is the one that complements the skin tone of the",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
model.generation_config.cache_implementation = cache_implementation
|
|
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
# Now with extra left-padding
|
|
inputs_expanded = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
pad_to_multiple_of=32,
|
|
).to(model.device)
|
|
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
|
|
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
@unittest.skip(reason="TODO @gante static cache's does not support beam search yet")
|
|
def test_static_cache_beam_search(self):
|
|
pass
|
|
|
|
@require_torch_accelerator
|
|
def test_offloaded_cache_equivalent_to_dynamic_cache(self):
|
|
"""Tests that OffloadedCache produces the same result as the default DynamicCache"""
|
|
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
|
device = model.device
|
|
|
|
if not is_torch_greater_or_equal("2.7", accept_dev=True) and device.type == "xpu":
|
|
self.skipTest(reason="This test requires torch >= 2.7 to run on xpu.")
|
|
|
|
input_text = "Fun fact:"
|
|
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
|
common = {
|
|
"num_beams": 4,
|
|
"num_beam_groups": 2,
|
|
"num_return_sequences": 4,
|
|
"diversity_penalty": 1.0,
|
|
"max_new_tokens": 20,
|
|
"early_stopping": True,
|
|
}
|
|
original = GenerationConfig(**common)
|
|
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
|
|
original_outputs = model.generate(generation_config=original, **inputs)
|
|
offloaded_outputs = model.generate(generation_config=offloaded, **inputs)
|
|
for original_output, offloaded_output in zip(original_outputs, offloaded_outputs):
|
|
assert torch.all(original_output == offloaded_output).item()
|
|
|
|
@require_torch_accelerator
|
|
def test_offloaded_cache_uses_less_memory_than_dynamic_cache(self):
|
|
"""Tests that OffloadedCache uses less memory than the default DynamicCache"""
|
|
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
|
device = model.device
|
|
|
|
if not is_torch_greater_or_equal("2.7", accept_dev=True) and device.type == "xpu":
|
|
self.skipTest(reason="This test requires torch >= 2.7 to run on xpu.")
|
|
|
|
input_text = "Fun fact:"
|
|
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
|
common = {
|
|
"num_beams": 4,
|
|
"num_beam_groups": 2,
|
|
"num_return_sequences": 4,
|
|
"diversity_penalty": 1.0,
|
|
"max_new_tokens": 20,
|
|
"early_stopping": True,
|
|
}
|
|
original = GenerationConfig(**common)
|
|
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
|
|
|
|
torch_accelerator_module = None
|
|
if device.type == "cuda":
|
|
torch_accelerator_module = torch.cuda
|
|
elif device.type == "xpu":
|
|
torch_accelerator_module = torch.xpu
|
|
|
|
torch_accelerator_module.reset_peak_memory_stats(device)
|
|
model.generate(generation_config=original, **inputs)
|
|
original_peak_memory = torch_accelerator_module.max_memory_allocated(device)
|
|
torch_accelerator_module.reset_peak_memory_stats(device)
|
|
model.generate(generation_config=offloaded, **inputs)
|
|
offloaded_peak_memory = torch_accelerator_module.max_memory_allocated(device)
|
|
print(f"original_peak_memory: {original_peak_memory}, offloaded_peak_memory: {offloaded_peak_memory}")
|
|
assert offloaded_peak_memory < original_peak_memory
|
|
|
|
@require_torch_gpu
|
|
def test_cache_copy(self):
|
|
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype=torch.bfloat16)
|
|
|
|
prompt_cache = StaticCache(
|
|
config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16
|
|
)
|
|
|
|
INITIAL_PROMPT = "You are a helpful assistant. "
|
|
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
|
|
# This is the common prompt cached, we need to run forward without grad to be abel to copy
|
|
with torch.no_grad():
|
|
prompt_cache = model(**inputs_initial_prompt, past_key_values=prompt_cache).past_key_values
|
|
|
|
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
|
|
responses = []
|
|
for prompt in prompts:
|
|
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
|
|
past_key_values = copy.deepcopy(prompt_cache)
|
|
outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=40)
|
|
response = tokenizer.batch_decode(outputs)[0]
|
|
responses.append(response)
|
|
|
|
EXPECTED_DECODED_TEXT = [
|
|
"You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTraveling is an enriching experience that broadens our horizons and exposes us to new cultures, landscapes, and people. Whether it's a week",
|
|
'You are a helpful assistant. What is the capital of France?\n\n\n## Response:Paris is the capital of France.\n\n\n\n\n\n## Query:\n\nIn a detailed analysis, compare the economic impacts of the introduction of the'
|
|
] # fmt: skip
|
|
self.assertEqual(responses, EXPECTED_DECODED_TEXT)
|
|
|
|
@require_torch_multi_gpu
|
|
def test_data_parallel_dynamic_cache(self):
|
|
"""
|
|
Tests that the dynamic cache works with nn.DataParallel. Under the hood, `DynamicCache` is rebuilt from
|
|
multiple `DynamicCache` in the gather step.
|
|
"""
|
|
|
|
model_repo = "hf-internal-testing/tiny-random-MistralForCausalLM"
|
|
model = AutoModelForCausalLM.from_pretrained(model_repo).to(torch_device)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
|
|
|
# w/o DP: batch_size = num_gpu
|
|
# w DP: batch_size = 1 (with num_gpus replicas)
|
|
num_gpus = get_gpu_count()
|
|
model_inputs = tokenizer(["foo bar"] * num_gpus, return_tensors="pt").to(model.device)
|
|
|
|
# w/o DP
|
|
no_parallelism_cache = model(**model_inputs).past_key_values
|
|
self.assertIsInstance(no_parallelism_cache, DynamicCache)
|
|
|
|
# w DP
|
|
model = torch.nn.DataParallel(model)
|
|
parallelism_cache = model(**model_inputs).past_key_values
|
|
self.assertIsInstance(parallelism_cache, DynamicCache)
|
|
|
|
# Check that the caches are the same
|
|
for layer_idx in range(len(no_parallelism_cache)):
|
|
for kv_idx in range(2): # 0 = key, 1 = value
|
|
torch.testing.assert_close(
|
|
actual=parallelism_cache[layer_idx][kv_idx], expected=no_parallelism_cache[layer_idx][kv_idx]
|
|
)
|
|
|
|
@require_torch_gpu
|
|
def test_static_cache_no_cuda_graph_skips(self):
|
|
"""
|
|
Tests generating with static cache and compilation doesn't skip cuda graphs. Regression test for #36543.
|
|
|
|
(? We set `fullgraph=True`, which according to torch docs means it should raise an exception. Instead,
|
|
messages are being thrown to stderr?)
|
|
"""
|
|
model_repo = "hf-internal-testing/tiny-random-MistralForCausalLM"
|
|
model = AutoModelForCausalLM.from_pretrained(model_repo).to(torch_device)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
|
inputs = tokenizer(["foo bar"], return_tensors="pt").to(torch_device)
|
|
|
|
# on `main`, prior to #36543, this would send stderr messages about cuda graphs being skipped.
|
|
with CaptureStderr() as cap:
|
|
model.generate(**inputs, max_new_tokens=2, cache_implementation="static")
|
|
self.assertEqual(cap.err, "")
|
|
|
|
@require_torch_multi_gpu
|
|
def test_static_cache_multi_gpu(self):
|
|
"""Regression test for #35164: static cache with multi-gpu"""
|
|
|
|
model_id = "google/gemma-2-2b-it"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
device_map = {"model.embed_tokens": 0, "model.norm": 1, "model.rotary_emb": 1, "lm_head": 0}
|
|
num_hidden_layers = 26
|
|
for i in range(num_hidden_layers):
|
|
device_map[f"model.layers.{i}"] = 0 if i < 13 else 1
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
torch_dtype="bfloat16",
|
|
device_map=device_map,
|
|
)
|
|
inputs = tokenizer("Today is a beautiful day!", return_tensors="pt").to(0)
|
|
_ = model(**inputs)
|
|
_ = model.generate(**inputs, max_new_tokens=2, cache_implementation="hybrid")
|