transformers/tests/models/idefics2/test_image_processing_idefics2.py
amyeroberts 6b78360e6d
Add Idefics2 (#30253)
* Initial add model additions

* Test

* All weights loading

* Can perform full forward pass

* Local and remote the same

* Matching local and remote

* Fixup

* Idefics2Model importable; fixup docstrings

* Don't skip by default

* Remove deprecated use_resampler arg

* Remove self.config

* DecoupledLinear takes config

* Tidy up

* Enable eager attention and tidy up

* Most tests passing

* Update for batch of processed images

* Add image processor

* Update doc pages

* Update conversion script

* Remove erroneous breakpoint

* Remove accidendtal spelling change

* Update to reflect changes on hub - make generate work

* Fix up

* Image processor tests

* Update tests

* Add a processor

* Add a processor

* Update convert script

* Update modeling file - remove fixmes

* Bug fix

* Add processing test

* Use processor

* Fix up

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix test

* Update config - PR comments and defaults align with checkpoint

* Reviewer comments

* Add copied froms for flahs attention

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove qk_layer_norm and freeze_layers functionality

* Fix

* Remove freeze_layer options from config

* Sync with upstream main

* Fix attention shapes siglip

* Remove Llava-next refs - TO REBASE

* Use AutoModel for text model

* Add comment to explain vision embeddings

* Fix issue with tie_word_embeddings

* Address review comments

* Fix and fix up

* Chat templates for idefics

* Fix copies

* Fix

* Add layer norms to FA2

* Fix tests

* Apply suggestions from code review

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix

* Review comments

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update inputs merger

* Merge weights in correct order

* Update convert script

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update template

* Model code examples (fix idefics too)

* More review comments

* Tidy up

* Update processing

* Fix attention mask preparation

* Update inputs_merger inputs

* Vectorize inputs_merger

* Update src/transformers/models/idefics2/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

* Review comments

* saying bye to the `qk_layer_norms`

* Simplify

* Update latents

* Remove erroneuous readme changes

* Return images when applying chat template

* Fix bug - prompt images are for a single sample

* Update src/transformers/models/idefics2/modeling_idefics2.py

* image splitting

* fix test

* some more comment

* some comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/idefics2/image_processing_idefics2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update processor

* Update model tests

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Don't add BOS in template

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Remove index in examples

* Update tests to reflect #13

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* PR comment - consistent typing

* Update readme and model doc

* Update docs

* Update checkpoint references

* Update examples

* Fix and update tests

* Small addition

* Update tests - remove copied from as no ignore placement copy could be found

* Update example

* small fixes

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update README.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Connector model as bridge

* Fix up

* Fix up

* Don't pass model inputs for generation kwargs update

* IDEFICS-2 -> Idefics2

* Remove config archive name

* IDEFICS-2 -> Idefics2

* Add back llava-next

* Update readmes

* Add requirements for processor tester

* Use custom convert_to_rgb to avoid possible BC

* Fix doc example

* Fix doc example

* Skip model doc tests - as model to large

* More doc example - account for image splitting

* Update src/transformers/image_transforms.py

* Fix config doctest

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-15 17:03:03 +01:00

271 lines
11 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin
if is_vision_available():
from PIL import Image
from transformers import Idefics2ImageProcessor
if is_torch_available():
import torch
class Idefics2ImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
num_images=1,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_convert_rgb=True,
do_pad=True,
do_image_splitting=True,
):
size = size if size is not None else {"shortest_edge": 378, "longest_edge": 980}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.num_images = num_images
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_convert_rgb = do_convert_rgb
self.do_pad = do_pad
self.do_image_splitting = do_image_splitting
def prepare_image_processor_dict(self):
return {
"do_convert_rgb": self.do_convert_rgb,
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
"do_image_splitting": self.do_image_splitting,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to BridgeTowerImageProcessor,
assuming do_resize is set to True with a scalar size and size_divisor.
"""
if not batched:
shortest_edge = self.size["shortest_edge"]
longest_edge = self.size["longest_edge"]
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
aspect_ratio = w / h
if w > h and w >= longest_edge:
w = longest_edge
h = int(w / aspect_ratio)
elif h > w and h >= longest_edge:
h = longest_edge
w = int(h * aspect_ratio)
w = max(w, shortest_edge)
h = max(h, shortest_edge)
expected_height = h
expected_width = w
else:
expected_values = []
for images in image_inputs:
for image in images:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
effective_nb_images = self.num_images * 5 if self.do_image_splitting else 1
return effective_nb_images, self.num_channels, height, width
def prepare_image_inputs(
self,
batch_size=None,
min_resolution=None,
max_resolution=None,
num_channels=None,
num_images=None,
size_divisor=None,
equal_resolution=False,
numpify=False,
torchify=False,
):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
batch_size = batch_size if batch_size is not None else self.batch_size
min_resolution = min_resolution if min_resolution is not None else self.min_resolution
max_resolution = max_resolution if max_resolution is not None else self.max_resolution
num_channels = num_channels if num_channels is not None else self.num_channels
num_images = num_images if num_images is not None else self.num_images
images_list = []
for i in range(batch_size):
images = []
for j in range(num_images):
if equal_resolution:
width = height = max_resolution
else:
# To avoid getting image width/height 0
if size_divisor is not None:
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
images_list.append(images)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list]
if torchify:
images_list = [[torch.from_numpy(image) for image in images] for images in images_list]
return images_list
@require_torch
@require_vision
class Idefics2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = Idefics2ImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = Idefics2ImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "do_image_splitting"))
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for sample_images in image_inputs:
for image in sample_images:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for images in image_inputs:
for image in images:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for images in image_inputs:
for image in images:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
tuple(encoded_images.shape),
(self.image_processor_tester.batch_size, *expected_output_image_shape),
)